
Automation for 
Manual Bug 
Bounty Hunters
Eugene Lim
@spaceraccoon



Eugene Lim 🇸🇬
spaceraccoon
Blog: spaceraccoon.dev
Twitter: @spaceraccoonsec



Why automate?

3



My bug bounty journey mostly involved manual hunting.

4

2022

• Native vulnerabilities, reverse engineering, code review

• Jan 2021: H1-Elite Hall of Fame

• Selective programs and higher impact

• Still global top 40, but not really farming rep

Jan 2019

• IDORs, business logic, XSS – First bounty end-Feb 2019 IDOR

• Nov 2019: H1-213 Live Hacking Event Most Valuable Hacker

• Large number of programs and bugs

• Entered global all-time top 100 by Mar 2020



In the long run, bounty hunters tend to fall into two camps.

5

Automation

•Recon
•Services
•Scanners
•Signatures

Manual

•Scope
•Applications
•Humans
•Heuristics



Despite overlaps, they require different skillsets and resources.

Recon Test Exploit

6

• Subdomain enumeration
• Attack surface mapping

• Explore application 
functionality

• Enumerate APIs
• Decompile source code

• Signature-based 
scanners

• Fixed payload templates

• Manually modify 
payloads

• Observe behavior

• Automated 
exploitation

• Custom escalation and 
pivoting



However, manual 
hunters should not rely 
exclusively on 
“browser-and-Burp”.

Time-intensive Inconsistent

Inefficient BORING!

Manual

7



Free tools have increased in quantity and quality…

Fuzzing

clusterfuzz

RESTler

Mobile

AppShark

MobSF

SAST

Semgrep

CodeQL

8



…helping manual hunters focus on triage and exploitation.

9

Recon

• Automate 
attack surface 
mapping

• Manually define 
search sources

Test

• Filter 
interesting 
behaviour

• Manually 
confirm bug

Exploit

• Automate 
payload 
generation

• Manually write 
generators



More importantly, they help manual hunters differentiate 
themselves from automation and recon hunters.

10



Automation for manual hunters uses a different set of tools 
and workflows from standard automation. 

“Rather than scanning for vulnerabilities, we need to scan 
for interesting behaviour. Then, having identified the tiny 
fraction of inputs that yield interesting behaviour, we can 
investigate further.”

– James Kettle, “Backslash Powered Scanning: hunting unknown vulnerability classes”



Today, I will discuss how you can add automation in each 
stage as a manual bug bounty hunter.

12

Recon Test Exploit



Recon

13



Single-app scope doesn’t have to mean zero recon.

14

Client-side source code API enumeration / 
introspection

Cloud / SaaS 
integration

Reverse engineering



Client-side code can yield important data.

APIs
• Prod
• Dev

Secrets
• Credentials
• Encryption

Integrations
• Cloud
• SaaS

15



1-to-1 (or close to) decompilers are key!

webpack-
exploder asar

wabt hbctool

16

Shoutout to LinkFinder for quick API extraction



Common API frameworks and how to enumerate them.

17

Introspection*GraphQL

Swagger UIOpenAPI

Suggestions + PlaygroundApollo

Dirbusting + DocumentationGeneric



Keep an eye out for third-party integrations.

Cloud
• Resource 

enumeration (letitgo, 
recon.cloud)
• Bucket naming 

patterns
• Role permissions

SaaS
• Dangling urls
• Shortlink services
• CORS/PostMessage

misconfigurations

18



Reverse-engineering (dynamic 
and static) is a highly-
underrated skill in bug bounty.

Frida

Radare

Ghidra



Test

20



My old spreadsheet method…

21

Use features

Log request path

Manually test

Path Method Params XSS SSRF

/users GET id X X

/users POST email X X

/users PUT name Y X

… … … … …



As I moved to part-time hunting, this became untenable.

Positives
• Extremely thorough
• Customized for each context
• Easy to bootstrap

Negatives
• Extremely slow
• Inconsistent and not codified
• Difficult to scale

22



Leverage modern 
DevSecOps tools to 
pre-screen possible 
vulnerabilities. 

23

Static

• Semgrep
• CodeQL
• AppShark*

Dynamic

• ClusterFuzzLite
• Jaeles
• RESTler



Semgrep / CodeQL quickly identifies potential vulnerabilities in huge codebases.

24

Automatically identify vulnerable sources and sinks

Automatically track tainted data

Manually verify sanitizers and transformations

Manually write proof-of-concept

LOTS OF 
FALSE 

POSITIVES



The secret sauce is your curated custom rules. 
DON’T “spray and pray”!

25

Rules

App-
specific 
sources

App-
specific 

sinks
App-

specific 
responses



Accumulate your corpus of battle-tested rules over time.

26

Endpoints/Code

Filtered 
automatically 
by SAST/DAST

Possible 
Bugs

Triaged 
manually by 

you



Exploit

27





Case Study: 
Generating EPUB 
payloads

Don’t just copy and paste 
payloads, generate them.
• Locate exploit primitives e.g.

HTTPLeaks
• Write generation scripts

29



Use tools like DOM Invader and write your own 
extensions.

Burp logs are one of your richest sources of data as a manual bug bounty hunter!



You don’t need to spin your own 
recon framework but try creating 
and hosting your own exploit 
services.

31



Modern Manual Bug 
Hunting

32



If you find 
yourself doing 
the same thing 
again and 
again, it’s time 
to automate!

33

Same 
dirbusting

Same 
injection tests

Same authz
checks

Same source-
to-sink tracing

Same 
payloads



With the right automation, manual hunters can focus on their 
strengths. The goal is to complement your workflow, not replace it.

Targeted Recon

Focused Test

Comprehensive 
Exploit

Fun and Profit

34



Thank you
Blog: spaceraccoon.dev
Twitter: @spaceraccoonsec


