Automation for
Manual Bug
Bounty Hunters

Eugene Lim ==
spaceraccoon

Blog: spaceraccoon.dev

Twitter: @spaceraccoonsec

Why automate? .

My bug bounty journey mostly involved manual hunting.

Jan 2019

ker One

IDORSs, business logic, XSS — First bounty end-Feb 2019 IDOR a hackeron,

hack,
erone
hackerq, -

Nov 2019: H1-213 Live Hacking Event Most Valuable Hacker hackerone

erone

3Ckerme

"aCkErone‘

hack
erone hackerone o
rone

Large number of programs and bugs hackerone packe
Tone hackerone

Entered global all-time top 100 by Mar 2020 erone hackerone

hackerone hackerone

hackerone hackerone hackerone

Native vulnerabilities, reverse engineering, code review
Jan 2021: H1-Elite Hall of Fame
Selective programs and higher impact

Still global top 40, but not really farming rep

I In the long run, bounty hunters tend to fall into two camps.

e Recon e Scope
eServices e Applications
eScanners e HumMans

e Signatures e Heurlstics

I Despite overlaps, they require different skillsets and resources.

* Signature-based
e Subdomain enumeration scanners Automated
e Attack surface mapping * Fixed payload templates exploitation

Recon

Exploit

* Explore application * Manually modify e Custom escalation and
functionality payloads pivoting
e Enumerate APIs * Observe behavior

* Decompile source code

However, manual

~ | hunters should not rely
~ exclusively on
“browser-and-Burp”.

Time-intensive Inconsistent

Inefficient BORING!

I Free tools have increased in quantity and quality...

Fuzzing Mobile SAST

AppShark Semgrep
RESTler MobSF CodeQL

I ...helping manual hunters focus on triage and exploitation.

e Automate e Filter e Automate
attack surface interesting payload
mapping behaviour generation

e Manually define ¢ Manually e Manually write

search sources confirm bug generators

More importantly, they help manual hunters differentiate
themselves from automation and recon hunters.

% N oy .‘
Run / ol .
nuclei with | \ F|nd ;
default | bu g S |

templates

N ‘
m Dupe

Dupe
with with |
9999 other |4 9999 other }
people

W8

Automation for manual hunters uses a different set of tools
and workflows from standard automation.

“Rather than scanning for vulnerabilities, we need to scan
for interesting behaviour. Then, having identified the tiny
fraction of inputs that yield interesting behaviour, we can
investigate further.”

— James Kettle, “Backslash Powered Scanning: hunting unknown vulnerability classes”

Today, | will discuss how you can add automation in each
stage as a manual bug bounty hunter.

Recon

I Single-app scope doesn’t have to mean zero recon.

<
22 Q[|

Client-side source code APl enumeration / Cloud / Saa$S Reverse engineering
introspection integration

I Client-side code can yield important data.

e Prod
e Dev

e Credentials
e Encryption

e Cloud
e SaasS

Integrations

1-to-1 (or close to) decompilers are key!

@ Webpack Exploder

We b a C k_ Unpack the source code of React and other Webpacked
Javascript apps! Check out Expanding the Attack Surface:

exploder

React Hative Android Applications to learn how 1o turbocharge
your React hacking. Test this out against some real samples?

Map File

Wa bt h thOOl @111‘ by Eugene Lim & Stuled by HES.css]

Share: B 'i ﬂﬂ E

Shoutout to LinkFinder for quick APl extraction

I Common API frameworks and how to enumerate them.

GraphQL Introspection*

OpenAP] Swagger Ul

Apollo Suggestions + Playground

Generic Dirbusting + Documentation

I Keep an eye out for third-party integrations.

Cloud) —— SaaS

e Resource 1AVE m e == * Dangling urls
enumeration (letitgo, AN T
recon.cloud)

e Shortlink services

* CORS/PostMessage
misconfigurations

* Bucket naming
patterns

* Role permissions

Radare

Reverse-engineering (dynamic
and static) is a highly-
underrated skill in bug bounty. Ghidra

Test

I My old spreadsheet method...
-

Jusers GET
Use featu res /users POST email X X
/users PUT name Y X

Log request path

Manually test

I As | moved to part-time hunting, this became untenable.

Positives

e Extremely thorough
e Customized for each context
e Easy to bootstrap

Negatives

e Extremely slow
e I[nconsistent and not codified
e Difficult to scale

Leverage modern
DevSecOps tools to
pre-screen possible
vulnerabilities.

e Semgrep e ClusterFuzzLite
e CodeQL e Jaeles

e AppShark* e RESTler

I Semgrep / CodeQL quickly identifies potential vulnerabilities in huge codebases.

‘ Automatically identify vulnerable sources and sinks

III. Automatically track tainted data

LOTS OF
FALSE

POSITIVES

P Manually verify sanitizers and transformations

Manually write proof-of-concept

ge

The secret sauce is your curated custom rules.
DON’T “spray and pray”!

App-
specific

sinks
App- App-
specific specific

sources reSponses

I Accumulate your corpus of battle-tested rules over time.

°oa o o
o ® ‘ ‘o
o .
Endpoints/Code Possible
.‘ Bugs
oc0°
©eo
Filtered Triaged
automatically manually by

by SAST/DAST vou

Exploit

CSRF PoC generator

Request to: https://example.com

Pretty Raw Hex Inspector 1 m T
POST / HTTP/2
Host: example.com Request Attributes
Sec-Ch-Ua: "Google Chrome";v="105", "Not)A;Brand";v="8", "Chromium";v="105"
Sec-Ch-Ua-Mobile: 70

Sec-Ch-Ua-Platform: "mac0S"

Upgrade-Insecure-Requests: 1

Sec-Fetch-Site: none Request Body Parameters
Sec-Fetch-Mode: navigate
Sec-Fetch-User: 71 Request Cookies
10 Sec-Fetch-Dest: document

@ @} | Search... 0 matches | Request Headers

CSRF HTML:

Request Query Parameters

Wo~NOULLAE WN P

1 <html>

2 <!-— CSRF PoC - generated by Burp Suite Professional —-—>
3 <body>

4 <script>history.pushState('"',

5 <form action="https://example.com/" method="POST">
6 <input type="hidden" name="foo" value="bar" />
7

8

9

0

1

'/')</script>

<input type="submit" value="Submit request" />
</form>
</body>

10 </html>
1

@ {é} | Search... | 0 matches

Regenerate [Test in browser][Copy HTML][Close]

Case Study:
Generating EPUB

payloads

21\ GJFR Merge pull request #1 from DistriNet/add-license-1 | -

resources
src
.gitignore
LICENSE
README.md

create.sh

Don’t just copy and paste
payloads, generate them.

* Locate exploit primitives e.g.

HTTPLeaks
* Write generation scripts

Initial commit
Initial commit
Initial commit
Create LICENSE
Initial commit

Initial commit

aa@@4fc on 26 Aug 2020 O 3 commits

2 years ago
2 years ago
2 years ago
2 years ago
2 years ago

2 years ago

0 search results for 'i1b5vd57">"

Search the blog. m

[x Q’j Elements Console Sources Network Performance Memory Application Security Lighthouse = DOM Invader

m 11bSvdS7 Search for Canary Inject URL Copy canary Clear all

Messages

A\ Only interesting sinks are being shown. All sources are being hidden. You can configure this in the DOM Invader settings.

Use tools like DOM Invader and write your own
extensions.

Burp logs are one of your richest sources of data as a manual bug bounty hunter!

./interactsh-sdrver -domain hackwitf@automation.com

i b

projecf§discovery.io

Requestiflg SSL Certificate fo ion.com hackwithautofgation.com]

You don’t need to spin your own
recon framework but try creating
and hosting your own exploit
services.

Modern Manual Bug
Hunting

Same
dirbusting

SEIE
payloads

If you find
yourself doing
the same thing
again and
again, it’s time
to automate!

Same
injection tests
Same source- Same authz
to-sink tracing checks

With the right automation, manual hunters can focus on their
strengths. The goal is to complement your workflow, not replace it.

"
.,'-.

e

Focused Test Fun and Profit

Targeted Recon Comprehensive
Exploit

Thank you

Blog: spaceraccoon.dev

Y - Twitter: @spaceraccoonsec

