
FRida  Unleashed

Scratching beneath the surface of bug bounties



Akshay

Product Security Engineer

mast3root

Web2/Mobile security specialist

Bharath

Product Security Engineer

0xbharath

https://disruptivelabs.in

https://twitter.com/mast3root
https://twitter.com/0xbharath
https://disruptivelabs.in/


Why this talk?

Mobile security testing is nuanced

Mobile security testing is daunting

Mobile security testing has a lot of tribal knowledge

It’s fun!



FRida

Dynamic instrumentation toolkit for developers, reverse-engineers, and
security researchers.

Injects V8 JavaScript engine in the process (QuickJS/Duktape).

Provides simple to use APIs to build custom tools.



FRida - Modes of Operation

1. Injected

2. Embedded

3. Preloaded

https://frida.re/docs/modes/

https://frida.re/docs/modes/


Hurdle 1 - Root/Jailbreak detection

An app’s capability to detect when they are running on a jailbroken iOS or

rooted Android device.

This has become a baseline security mechanism for most apps (opinion)

Apps use a variety of libraries or methods to implement this such as

rootbeer and IOSSecuritySuite

https://github.com/scottyab/rootbeer
https://github.com/securing/IOSSecuritySuite


Bypassing Root/Jailbreak detection - Easy way

There are tools and frameworks available to bypass Root/Jailbreak detection.

Objection

FRida Hooks

Magisk plugins (Not Frida)

Xposed Plugins (Not Frida)

https://codeshare.frida.re/

https://github.com/sensepost/objection
https://codeshare.frida.re/
https://codeshare.frida.re/


Bypassing Root/Jailbreak detection - Tips

If using objection -

objection -g com.attack.appname explore -s "android root disable”

https://github.com/sensepost/objection/blob/master/agent/src/android/root.ts

objection -g com.attack.ipaname explore -s "ios jailbreak disable”

https://github.com/sensepost/t/blob/master/agent/src/ios/jailbreak.ts

https://github.com/sensepost/objection/blob/master/agent/src/android/root.ts
https://github.com/sensepost/t/blob/master/agent/src/ios/jailbreak.ts


What to do when automated scripts or tools fail?

Using frida we can start experimenting and start hooking into interesting

places and syscalls using early instrumentation.

/proc/*/

Popen and Fopen

getEnv

Stat

__system_property_find

frida --codeshare FrenchYeti/android-arm64-strace -U -f

YOUR_BINARY



What to do when automated scripts or tools fail?

Using frida we can start experimenting and start hooking into interesting

places and syscalls using early instrumentation.

Early instrumentation on Java

Java.deoptimizeEveything();

Java.perform(()={

Java.use(…//InsertLogic)

})



What to do when automated scripts or tools fail?

Early instrumentation on SO

var ourlib = "librarycustom.so";

var do_dlopen = null;

var call_ctor = null;

var ModBase = null;

Process.findModuleByName('linker64').enumerateSymbols().forEach(function(sym) {

if (sym.name.indexOf('do_dlopen') >= 0) {

        do_dlopen = sym.address;

} else if (sym.name.indexOf('call_constructor') >= 0) {

        call_ctor = sym.address;

}

})

Interceptor.attach(do_dlopen, function() {

var library = this.context['x0'].readUtf8String();

if (library != null) {

if (library.indexOf(ourlib) >= 0) {

h( ll f i () {



A quick tale from trenches (case study)

This is from a Private Bug Bounty Program with Mobile app in scope

We had early advantage as we got invited after 1 month of launch

We noticed that almost no one reported bugs on the Mobile application

We used APKiD  to identify the protector which was used in the Android

App

Bypassed the Root detections using Frida hooking

Multiple APIs were vulnerable to trivial issues like SQL injection

Reported and Got it Fixed



Hurdle 2 - Certificate Pinning

Certificate pinning is mechanism that allows accepting only authorized
("pinned") certificates for authentication of client-server connections.

This mechainism is devised as a means of thwarting MiTM. This essentially

means, we will not be able to use our interception proxies to manipulate API

traffic.



Bypassing Certificate Pinning - Tips

Frida Scripts which are commonly available on codeshare

Objection

Hash replacement

network_security _config.xml (Android)

Info.plist (iOS)

SSLkillswitch

Flutter

disable-flutter-tls-verification

https://codeshare.frida.re/@pcipolloni/universal-android-ssl-pinning-bypass-with-frida/


What to do when automated scripts or tools fail?

Identify the ways in which application communicates with server

Identify the network stack which the application uses

Identify whether the application relies on the OS provided SSL libraries or

comes with custom ones.

OS Provided - LibSSL.so

To Hook - SSL_read and SSL_write

Custom ones

BoringSSL

WolfSSL etc



What to do when automated scripts or tools fail?

Bypassing SSL Pinning on custom library

function CaptureSSLTraffic() {

let _sslWrite = libSymbol('libcocos2dcpp.so!SSL_write');

let _sslWriteOld = new NativeFunction(_sslWrite, 'int', ['pointer', 'pointer', 'int']);

let counter = 1;

// traffic out

console.log('raplacing [libcocos2dcpp.so!SSL_write]');

  Interceptor.replace(_sslWrite, new NativeCallback((ctx, buffer, length) => {

    counter++;

// remove gzip compress feature

let replace = buffer.readUtf8String(length).replace('Accept-Encoding: deflate, gzip\r\n', '');

let newBuffer = Memory.allocUtf8String(replace);



Hurdle 3 - Encryption mechanisms

Apps can encryt the network traffic to ensure attacker don’t get visibility into

the traffic. In this case, as attacker you won’t be able to manipulate traffic

even after bypassing root detection/SSL Pinning etc.



Common techniques to figure out encryption
Logic

Frida Scripts which are commonly available on codeshare

frida --codeshare dzonerzy/aesinfo -f com.app

Objection

Looking for patterns

Java - javax.crypto  library

ios - CCrypt



What to do when automated tools/scripts fail?

frida-trace  to rescue

frida-trace -U -i "encry*" com.appname

frida-trace -U -i "ccrypt*" com.appname



Hurdle 4 - FRida Detection

Frida detection is, well, mechanisms to detect if Frida is being run on a mobile
device.



Common ways to bypass Frida detection

Objection renames the Frida to Freeda  binary

Bypassing String based Search

Bypassing Memory based Search

Bypassing port based Detections



Taking it to next level - Brida

Brida is a Burp Suite Extension that, working as a bridge between Burp Suite
and Frida, lets you use and manipulate applications’ own methods while
tampering the traffic exchanged between the applications and their back-end
services/servers.

https://github.com/federicodotta/Brida


Shoutouts & people to follow

Ole André

Leon Jacobs

Jiska Classen

Eduardo Novella

FrenchYeti

https://twitter.com/oleavr
https://twitter.com/leonjza
https://www.youtube.com/c/jiskac
https://twitter.com/enovella_
https://github.com/frenchyeti



