
Tour of Common Web3
Vulnerabilities

● Smart contract triagers at @immunefi
● Interested in investigating EVM based defi

hacks.
● Previously worked as an appsec engineer in

web2 space.
● Create educational content.

 @immunefi-team/community-challenges

 https://immunefi.medium.com

 ArbazKiraak 0xrudrapratap

Who are we

● What are smart contracts
● Web2 vs Web3 application architecture flow
● Most common decentralized application(DAPP)

vulnerabilities
● Most common smart contract vulnerabilities
● Outro - Get started with smart contract hacking

resources

Agenda

What are smart contracts?

● Immutable program code containing set of instructions
to be executed.

● Run on decentralized blockchain network such as
Ethereum, Solana, Polkadot etc

● Extensively written in high level languages like Solidity,
Vyper, Rust, Stacks etc

● Contains set of OPCODES which interacts with the EVM
(Ethereum virtual Machine)

Web2 vs Web3 Architecture

What are these wallets?

● Generates a pair of private key and public key
○ Private key(secp256k1) gives access to the wallet
○ Public key represents your address

● Handles the communication between smart contracts
and the frontend
○ Read, Write, Execute instruction

● Store digital assets
○ Ethereum or ERC20 tokens like USDT etc
○ ERC721 (NFT) assets.
○ Other many variants.

 How does authentication works?
 Compared with current web2

● Meant to be public in nature.

● Digital signatures are used to verify
the ownership of an account.

● Use case: Signature owner can create
a offline signature, then pass it to
other user or contract that can use
the signature to broadcast the
transaction on behalf of the signer
while paying the gas fee on behalf of
the signer.

Why Signatures?

Auth Flow

 1. User Initiates login and sends
request to backend to create a
random nonce.

2. User signs a message which
contains (message + nonce) with
wallet to create a unique signature.

3. Backend verifies the signature by
recovering the address of signer and
generate the auth token.

4. Backend expires the current nonce,
so a unique nonce is created next
time the user login.

Example of Auth Workflow

1. Missing random nonce
○ Signature Replay

2. Validator accepts arbitrary message.

{sigHash:"0xabc..",userAddr:"[victim address]"}

○ Logged in as victim.

Authentication Vulnerabilities

Applications that generate signatures but do not use a random nonce to generate the
signatures are vulnerable to replay attacks.

No nonce is used to generate a signature therefore making it
vulnerable to signature replay attacks.

Missing Random Nonce

When a cryptographic signature intended for a single use is permitted to be
replayed repeatedly, leads to signature replay attacks.

If an application only verifies the user-supplied signature without validating whether the provided
message and signature are the same as those required by the application to generate JWT tokens,
an authentication bypass could happen.

Validator Arbitrary accepts any message

> We substituted a random signature picked
from the database of Ethereum Verified
Signatures for each of the three parameter

1. Address
2. Signature
3. and message.

> If the application is not verifying that the
message signed by the user is different from
what the application asked the user to sign, an
attacker could produce an auth token on the
victim's behalf.

Validator Arbitrary accepts any message hash

Client Side Injections

● Javascript injections (XSS)
● Substituting the contract addresses.
● Modifying transaction arguments or parameters.

Severity stands critical considering the digital assets at risk.

source: coindesk

https://www.coindesk.com/business/2021/12/10/badgerdao-reveals-details-of-how-it-was-hacked-for-120m/

Common smart contract
vulnerabilities

01 Unsafe external calls

02 Insecure external dependencies

03 Access control issues

External Calls
Calls to 3rd party address that we do not control

● Calls to untrusted contracts can
introduce several unexpected risks or
errors.

● External calls controlled by an attacker
may force your contract to transition into
an undefined state.

Types of External Calls

01 STATIC - CALL

02 DELEGATE-CALL

Re-entrancy attack (call method)

● A reentrancy attack occurs when a function makes an
external call to another untrusted contract

● Then the untrusted contract makes a recursive callback
to the vulnerable contract function to steal funds.

 1. EOA (Externally Owned Accounts)
 2. Smart contracts themselves

But first, Who can be the callers?

Example re-entrancy attack (call method)

How to fix this vulnerability?

Mutex locking

CEI (checks effects interaction) pattern

CEI (checks effects interaction) pattern

Reentrancy vulnerable pattern

Comparison with CEI pattern

Short intro to delegate(call)

DELEGATE CALL
 setNum(5)

CONTRACT-A CONTRACT-B

SLOT Contract - A Contract - B

0 5 0

1 ….. 0

● Using this method, contract can preserve the storage state while using the
logic of contract.

● Introduced the concept of Proxies.

● Example of the delegatecall

Storage layout

SAVE STATE

Delegate(call) and proxies

The proxy contract redirects all the calls it receives to an logic contract,
whose address is stored in its (Contract A’s) storage.

The proxy contract runs Contract B’s code as its own, modifying the
storage and balance of Contract A.

1. Transparent Proxy Pattern (TPP)

● upgrade logic is stored in proxy itself.
● gas-inefficient.

2. Universal Upgradable Proxy Standard (UUPS)

● upgrade logic is stored in logic itself.
● gas-efficient.

Types of Proxies Patterns

By calling the upgrade function, the storage slot on the proxy contract is
updated to point to a new logic contract.

Uninitialized proxy bug

● Lot of developers often leave the contracts uninitialized. This is
not an problem in most cases, but problematic when it leads to
some major changes like: granting ownership to the caller.

● Owner of the contract can upgrade the implementation contract.

● This bug can lead to the self-destruction of the implementation
contract, which could render the proxy contracts useless.

CALL DELEGATE CALL

(PROXY)
(DATA)

(LOGIC)
SAVE STATERETURN

DELEGATE CALL

(LOGIC)

SELFDESTRUCT

CALL

(PROXY)
(DATA)

DELEGATE CALL

CALL

(EVIL)

Its storage and code are erased from
the blockchain.

Proxy contract is bricked.

 Normal Workflow.

1. Malicious user deploys Evil contract
containing SELFDESTRUCT opcode.

2. Delegate(call) to Evil contract.

SAVE STATE

UUPS pattern uninitialized proxy bug

Wormhole bridge protocol : Attacker can held the entire protocol for ransom ($1.8 billion)
$10M Bounty : https://medium.com/immunefi/wormhole-uninitialized-proxy-bugfix-review-90250c41a43a
POC: https://github.com/immunefi-team/wormhole-uninitialized

makes the caller owner

https://medium.com/immunefi/wormhole-uninitialized-proxy-bugfix-review-90250c41a43a
https://github.com/immunefi-team/wormhole-uninitialized

Spot Price Dependency

Price Oracles

A price oracle is a tool used to view the price
information of a given asset.

On-chain oracles rely on constant-product
AMMs, like UniswapV2 or Balancer.

Users rely on the current ratio of two tokens.
For example, the ETH-DAI ratio gives us the
current price of an ETH.

Onchain Spot Price
Finding the price of WBTC in ETH on Uniswap V2 pair for ETH/WBTC,
grab the reserve balance of ETH and WBTC, then divide the two.

 X = 20 WBTC , Y = 100 ETH

 P(y) = Y / X

 P(y) = 100 / 20 = 5 ETH per WBTC

(Easily impact the price movement by buying and selling)

● Manipulating the large volume with flash loan (considering high
liquidity)

● Exploiting on borrowing platform as example. (spot price dependency)

Spot Price Dependency Example

1 ETH

10 ETH,
100k USDT

Borrow 900 USDT

querying price of 1 ETH

$1000

ETH/USDT

ETH/USDT

10k USDT

10k USDT

8 ETH

10 ETH,
100k USDT

ETH/USDT

querying price of 1 ETH

$10k
Borrow 72K USDT

Supply 8 ETH

8 ETH
Inflates the price of ETH

ORACLE

ORACLE

ORACLE

VAULT

VAULT

Supply 1 ETH

● Relying on TWAP (Time Weighted Average Price)
○ Average price between the time intervals.

● M-of-N Reporters
○ Averaging the price between the multiple AMM products

like Uniswap, MakerDAO, Balancer etc , and offchain oracle’s
like chainlink.

Hard choices, but better than spot price

Lack of Authentication

Creates a griefing opportunity by disrupting the operations of the protocol.

Blacklist/Whitelist any user on the contract.

Missing Authorization Check

Sense Finance : Lack of access control updating oracle data

Anyone can call the onSwap() which updates the stored oracle information on the pool contract.

https://medium.com/immunefi/sense-finance-access-control-issue-bugfix-review-32e0c806b1a0

Fixed by adding caller check

Why bug bounties and role of Immunefi?

● When code is law and code is money, then a bug that is exploited is
just straight money for the exploiter.

● Protecting from the biggest threats of space.
● Largest bug bounty program for DeFi and blockchain in general.
● Attract the best talent with the best reward.
● We hope to turn blackhats into whitehats through alignments of

incentives with projects.

Who wants to become a Web3 Hacker?

Useful links to get you started

● https://medium.com/immunefi/hacking-the-blockchain-an-ultimate-guide-4
f34b33c6e8b

● https://solidity-by-example.org
● https://github.com/ethereumbook/ethereumbook
● https://github.com/OffcierCia/DeFi-Developer-Road-Map
● https://www.damnvulnerabledefi.xyz
● https://cmichel.io/how-to-become-a-smart-contract-auditor/
● https://ethernaut.openzeppelin.com/
● https://github.com/immunefi-team/community-challenges

https://medium.com/immunefi/hacking-the-blockchain-an-ultimate-guide-4f34b33c6e8b
https://medium.com/immunefi/hacking-the-blockchain-an-ultimate-guide-4f34b33c6e8b
https://solidity-by-example.org
https://github.com/ethereumbook/ethereumbook
https://github.com/OffcierCia/DeFi-Developer-Road-Map
https://www.damnvulnerabledefi.xyz
https://cmichel.io/how-to-become-a-smart-contract-auditor/
https://ethernaut.openzeppelin.com/
https://github.com/immunefi-team/community-challenges

