Tour of Common Web3
Vulnerabilities

3

Who are we

Smart contract triagers at @immunefi

e Interested in investigating EVM based defi
hacks. ¥
e Previously worked as an appsec engineer in S
web?2 space. ‘
e Create educational content.

"9 ArbazKiraak fg Oxrudrapratap

9 @immunefi-team/community-challenges

M https://immunefimedium.com

3

Agenda

e What are smart contracts

e Web2 vs Web3 application architecture flow

e Most common decentralized application(DAPP)
vulnerabilities

e Most common smart contract vulnerabilities

e Outro - Get started with smart contract hacking
resources

What are smart contracts?

Immutable program code containing set of instructions
to be executed.

Run on decentralized blockchain network such as
Ethereum, Solana, Polkadot etc

Extensively written in high level languages like Solidity,
Vyper, Rust, Stacks etc

Contains set of OPCODES which interacts with the EVM
(Ethereum virtual Machine)

Web2 vs Web3 Architecture

WEB 2.0 WEB 3

! !

= =

Browser Browser
? 9880089080000 0 00000000000 000000000600808008800 ? 9000000000000 0000000|i0essesssssssssssssssssnee
Internet Internet

e e e e e e e e e \) R e e e R e] [e e) e e e e e e e \

I web server I : Web Server I

: | , Front-end |

| | I Javascript, HTML, CSS |
| |

I Front-end I '\]

1 Javascript, HTML, CSS 70 N st 'I ----------- =

: |

1

1 I : Wallets

: : g veramssk @, Phantom

! Back-end I 1

: NodeJs, Python, Java, Go etc. 1 I’_ ----------------------- 1
| I

: | g Smart Smart Smart Smart 1

1 I I 1 c c c c :

|

: : | L Il 1 J I

| | Ethereum virtual machine I

I ' I !

I ' I | '

Database 1 I

1 I 1 Block — Block — Block — Block — Block I

| |

| : | Ethereum Blockchain }

What are these wallets?

. ®

MetaMask WalletConnect

$ >

Fortmatic

Generates a pair of private key and public key
o Private key(secp256kl) gives access to the wallet
o Public key represents your address

Handles the communication between smart contracts
and the frontend
o Read, Write, Execute instruction

Store digital assets

o Ethereum or ERC20 tokens like USDT etc
o ERC721 (NFT) assets.

o Other many variants.

How does authentication works?
Compared with current web?2

® © ® B Login with MetaMask Demo X

(_

C @ localhost:3

Welcome to MetaMask Login Demo

Please select your login method.
For the purpose of this demo, only MetaMask login is implemented.

Why Signatures?

Meant to be public in nature.

Digital signatures are used to verify
the ownership of an account.

Use case: Sighature owner can create
a offline signature, then pass it to
other user or contract that can use
the signhature to broadcast the
transaction on behalf of the signer
while paying the gas fee on behalf of
the signer.

Auth Flow

1. User Initiates login and sends
request to backend to create a
random nonce.

2. User signs a message which
contains (message + nonce) with
wallet to create a unique signature.

3. Backend verifies the signature by
recovering the address of signer and
generate the auth token.

4. Backend expires the current nonce,
SO a unique nonce is created next
time the user login.

BACK END

o User Model

User

Publicaddress
nonce

r

e Generate Random Nonce

9 Verify Signature

FRONT END

Nonce

Signature

v

V' N

JWT/SESSION _

ID

v

e Fetch Current Nonce

3

1 POST /generate_jwt HTTP/2

2 Host: example

3

4 {"address":"0x465111a9c17Fb5002fca9EFb2A58027A0296B76b","signature":"0xda9dc42d809219ab3a8f969d86a0a832468991dd6cd215ch371a466d
a9bd5050613d12b98d82e63429f fOb44ebf3f8b04c689e2c4aff80a32faf4c75c2af286f1b", "msg":"I am signing my one-time nonce: 2619"}

HTTP/2 200 OK

Server: nginx

Date: Tue, 06 Sep 2022 11:19:56 GMT
Content-Type: application/json

oS WN =

{"jwt":"eyJhbGci101JIUzIINiIsINR5cCI6IkpXVCI9.eyIwYXlsb2FkIjp7ImlkIjoiNjIkMDMzNz1iNzc@OTcwMDASZjIwOTczIiwiUHVibGljQWRkecmVzcyI6T j
B4YTBjMDELYTQINDhKY jU3NDMxY2J1ZTQ4NmQ2Y jUSYTAWN2UGOWIyMyJ9LCIpYXQixxx2NjIONjM10DZ9. tq_sR7vHVmaOTLgN9bggMXvaaUYMOHdFDu8QjSo4ZQo"
}

Authentication Vulnerabilities

1. Missing random nonce
o Signature Replay

2. Validator accepts arbitrary message.

{sigHash:"Oxabc.." ,userAddr:" [victim address]"}

o Logged in as victim.

% Missing Random Nonce

When a cryptographic signature intended for a single use is permitted to be
replayed repeatedly, leads to signature replay attacks.

Applications that generate signatures but do not use a random nonce to generate the
signatures are vulnerable to replay attacks.

LN

POST /generate_jwt HTTP/2
Host: example

{"address":"0x465111a9c17Fb5002fca9EFb2A58027A0296B76b" , "signature": "0xda9dc42d809219ab3a8f969d86a0a832468991dd6cd215

cb371a466da9bd5050613d12b98d82e63429ff0b44ebf3f8b04c689e2c4aff80a32fafdc75c2af286f1b","msg":"I am signing my one-time
none"

No nonce is used to generate a signature therefore making it
vulnerable to signature replay attacks.

3 Validator Arbitrary accepts any message

| POST /generate_jwt HTTP/2
2 Host: example

4 {"address":"0x465111a9¢17Fb5002fca9EFb2A58027A0296B76h", "signature":"0xda9dc42d809219ab3a8f969d86a0a832468991dd6cd215¢ch371a466d
a9bd5050613d12b98d82e63429f fOb44ebf3f8b04c689e2c4aff80a32fafdc75¢c2af286f1b", "msg": "I am signing my one-time nonce: 2619"}

If an application only verifies the user-supplied signature without validating whether the provided
message and signature are the same as those required by the application to generate JWT tokens,
an authentication bypass could happen.

3 Validator Arbitrary accepts any message hash

=

—> (e @& etherscan.io/verifySig/9935

€™ Etherscan > We substituted a random signature picked
from the database of Ethereum Verified
I ‘ : ke = Signatures for each of the three parameter
1. Address

Message Signature #9935 Verified Signatures / #9935 .
2. Sighature

S 3. and message.

Address

Home Blockchain

Oxbba315914ec2d19d91f29a80447093d992712ea8

> If the application is not verifying that the
message signed by the user is different from
what the application asked the user to sign, an
attacker could produce an auth token on the

..

m's behalf
0Ox215dcce00e7ecO9b0e06daeb47056eb58b35b82cf1a1e187c83d1d00d9c246d2c211d0562dd41abb2582c65cdc78731 VI Ct I s e a .
e099c19c510a3161b6b5cb8e68a9aalc561b

Signed Message

| own this address

Signature Hash

® e

POST /generate_jwt HTTP/2
Host: example

{"address":"0xbba315914ec2d19d91f29a80447093d992712ea8","signature" :"0x215dcce®0e7ec9b0e0®6daecb47056eb58b35b82cflalel
87c83d1d00d9c246d2c211d0562dd41abb2582c65cdc78731e099c19c510a3161b6b5cbh8e68a9aalc561b", "message”":"I own this
address"}

Client Side Injections

3

e Javascript injections (XSS)
e Substituting the contract addresses.
e Modifying transaction arguments or parameters.

Severity stands critical considering the digital assets at risk.

BadgerDAO Reveals Details of How It Was Hacked for
$120M

The DeFi platform said an application platform that runs on its cloud network was the vector
for the attack.

By Nelson Wang @ Dec 11,2021 at 4:55 am. Updated Dec 12, 2021 at 10:09 p.m.

source: coindesk

https://www.coindesk.com/business/2021/12/10/badgerdao-reveals-details-of-how-it-was-hacked-for-120m/

Common smart contract
vulnerabilities

O] Unsafe external calls

02 Insecure external dependencies

03 Access control issues

External Calls

Calls to 3rd party address that we do not control

Calls to untrusted contracts can

introduce several unexpected risks or
errors.

External calls controlled by an attacker
may force your contract to transition into
an undefined state.

Types of External Calls

Ol STATIC - CALL

02 DELEGATE-CALL

Re-entrancy attack (call method)

e A reentrancy attack occurs when a function makes an
external call to another untrusted contract

e Then the untrusted contract makes a recursive callback
to the vulnerable contract function to steal funds.

But first, Who can be the callers?

1. EOA (Externally Owned Accounts) s2:
2. Smart contracts themselves @

Example re-entrancy attack (call method)

function withdrawBalance() public {
uint amountToWithdraw = userBalances[msg.sender];
(bool success,) =
require(success);
userBalances[msg.sender] =

msg.sender.call.value(amountToWithdraw)("");

000

() public payable {
(msg.sender == address(vulnContract)) {
vulnContract.withdrawBalance();

How to fix this vulnerability?

modifier noReentrant() {
require(!locked, "No re-entrancy");
locked = true;

locked = false; Mutex locking
}

function withdrawBalance() public noReentrant| {

}

function withdrawBalance() public {
uint amountToWithdraw = userBalances[msg.sender];
userBalances[msg.sender] = @; // effects : update state first

(bool success,) = msg.sender.call.valueCamountToWithdraw)(""); // interaction
require(success);

CEIl (checks effects interaction) pattern

Comparison with CEIl pattern

function withdrawBalance() public {

uint amountToWithdraw = userBalances[msg.sender];
userBalances[msg.sender] = 0; A/ effects : update state first

(bool success,) =

msg.sender.call.value(amountToWithdraw)(""); // interaction
require(success);

CEIl (checks effects interaction) pattern

function withdrawBalance() public {

uint amountToWithdraw = userBalances[msg.sender];

(bool success,) = msg.sender.call.value(amountToWithdraw)("");

require(success) ;
userBalances[msg.sender] = ©

Reentrancy vulnerable pattern

Short intro to delegate(call)

e Example of the delegatecall

CONTRACT-A

L DELEGATE CALL

setNum(5)

—>
&—
SAVE STATE

CONTRACT-B

SLOT | Contract - A Contract - B
(0] 5 (0]
T | e (0]

Storage layout

e Using this method, contract can preserve the storage state while using the
logic of contract.

e Introduced the concept of Proxies.

i Delegate(call) and proxies

® The proxy contract redirects all the calls it receives to an logic contract,
whose address is stored in its (Contract A's) storage.

e The proxy contract runs Contract B's code as its own, modifying the
storage and balance of Contract A.

Proxy Contract (A) Logic Contract (B)
delegatecall()

® Types of Proxies Patterns

1. Transparent Proxy Pattern (TPP)

e upgrade logic is stored in proxy itself.
e gas-inefficient.

2. Universal Upgradable Proxy Standard (UUPS)
e upgrade logic is stored in logic itself.

e gas-efficient.

By calling the upgrade function, the storage slot on the proxy contract is
updated to point to a new logic contract.

Uninitialized proxy bug

Lot of developers often leave the contracts uninitialized. This is
not an problem in most cases, but problematic when it leads to
some major changes like: granting ownership to the caller.

Owner of the contract can upgrade the implementation contract.

This bug can lead to the self-destruction of the implementation
contract, which could render the proxy contracts useless.

' CALL DELEGATE CALL
}‘ ;‘ — > — >
- -
RETURN ; SAVE STATE
(PROXY) (LOGIC)
(DATA)
m CALL DELEGATE CALL
- - an
\Wl) 7
M SAVE STATE
(EVIL) SELFDESTRUCT

(LOGIC)

DELEGATE CALL

(PROXY)
(DATA)

Normal Workflow.

1. Malicious user deploys Evil contract
containing SELFDESTRUCT opcode.

2. Delegate(call) to Evil contract.

Its storage and code are erased from
the blockchain.

Proxy contract is bricked.

UUPS pattern uninitialized proxy bug

contract MyToken is Initializable, ERC2@0Upgradeable, OwnableUpgradeable, UUPSUpgradeable {
ftrace | funcSig
function initialize() initializer public {
__ERC20_init("MyToken", "MTK");
—Ownable_init(); makes the caller owner
__UUPSUpgradeable_init();
}
ftrace | funcSig
function _authorizeUpgrade(address newImplementation)
internal
onlyOwner
override
{}
}

Wormhole bridge protocol : Attacker can held the entire protocol for ransom ($1.8 billion)
$10M Bounty : https:/medium.com/immunefi/wormhole-uninitialized-proxy-bugfix-review-90250c41a43a
POC: https:/qithub.com/immunefi-team/wormhole-uninitialized

https://medium.com/immunefi/wormhole-uninitialized-proxy-bugfix-review-90250c41a43a
https://github.com/immunefi-team/wormhole-uninitialized

Spot Price Dependency

Price Oracles i

e A price oracle is a tool used to view the price
information of a given asset.

Off-Chain

e On-chain oracles rely on constant-product
AMMs, like UniswapV2 or Balancer.

e Users rely on the current ratio of two tokens.
For example, the ETH-DAI ratio gives us the
current price of an ETH.

Onchain Spot Price

Finding the price of WBTC in ETH on Uniswap V2 pair for ETH/WBTC,
grab the reserve balance of ETH and WBTC, then divide the two.

X =20 WBTC, Y =100 ETH
Py)=Y/X

P(y) = 100/20 =5 ETH per WBTC

(Easily impact the price movement by buying and selling)
e Manipulating the large volume with flash loan (considering high
liquidity)
e EXxploiting on borrowing platform as example. (spot price dependency)

Spot Price Dependency Example

100k U ETH/USDT
Supply 1ETH L querying price of 1ETH
) 5N
1ETH Borrow 900 USDT \ $1000 ORACLE
VAULT
10k USDT ETH/USDT |
— |Iii|l|
E— Inflates the price of ETH
10k USDT 8 ETH
ORACLE
10 ETH ETH/USDT
Supply 8 ETH el e querying price of 1ETH
o> $10k
8 ETH Borrow 72K USDT ORACLE

VAULT

Hard choices, but better than spot price

e Relying on TWAP (Time Weighted Average Price)
o Average price between the time intervals.

e M-of-N Reporters
o Averaging the price between the multiple AMM products
like Uniswap, MakerDAO, Balancer etc, and offchain oracle’s
like chainlink.

Lack of Authentication

& Missing Authorization Check

/// @param accounts the accounts to set.
/// @param flags the flags for the accounts.
function setWhitelist(address[] calldata accounts, bool[] calldata flags) external {
uint256 numAccounts = accounts.length;
for (uint256 i = @; i < numAccounts; i++) {
whitelist[accounts[i]l] = flags[il;
}

emit WhitelistSet(accounts, flags);
function unpause() external { }
—unpause(); Blacklist/Whitelist any user on the contract.

}

unction _unpause() internal virtual whenPaused {
_paused = false;

emit Unpaused(_msgSender());

Creates a griefing opportunity by disrupting the operations of the protocol.

Sense Finance : Lack of access control updating oracle data

function onSwap(
SwapRequest memory request,
uint256 reservesTokenIn,
uint256 reservesTokenQut
) external override returns (uint256) {
bool pTIn = request.tokenIn == _token@ ? pti == 0 : pti == 1;

uint256 scalingFactorTokenIn = _scalingFactor(pTIn);
uint256 scalingFactorTokenQut = _scalingFactor(!pTIn);

// Upscale reserves to 18 decimals
reservesTokenIn = _upscale(reservesTokenIn, scalingFactorTokenIn);
reservesTokenOut = _upscale(reservesTokenOut, scalingFactorTokenOut);

// Update oracle with upscaled reserves
_updateOracle(
request.lastChangeBlock,
pTIn ? reservesTokenIn : reservesTokenQut,
pTIn ? reservesTokenOut: reservesTokenIn

s

uint256 scale = Adapterlike(adapter).scale();

Anyone can call the onSwap() which updates the stored oracle information on the pool contract.

325
326
327
328
LA
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346

function onSwap(
SwapRequest memory request,
uint256 reservesTokenIn,
uint256 reservesTokenOut
) external override returns (uint256) {
bool pTIn = request.tokenIn == _token@® ? pti == : pti = 1;

uint256 scalingFactorTokenIn = _scalingFactor(pTIn);
uint256 scalingFactorTokenOut = _scalingFactor(!pTIn);

// Upscale reserves to 18 decimals . .
reservesTokenIn = _upscale(reservesTokenIn, scalingFactorTokenIn); Fixed by addmg caller check

reservesTokenOut = _upscale(reservesTokenOut, scalingFactorTokenOut);

if (msg.sender == address(getVault())) {
// Given this is a real swap and not a preview, update oracle with upscaled reserves
_updateOracle(
request.lastChangeBlock,
pTIn ? reservesTokenIn : reservesTokenOut,
pTIn ? reservesTokenOut: reservesTokenIn
);
}

https://medium.com/immunefi/sense-finance-access-control-issue-bugfix-review-32e0c806b1a0

Why bug bounties and role of Immunefi?

When code is law and code is money, then a bug that is exploited is
just straight money for the exploiter.

Protecting from the biggest threats of space.

Largest bug bounty program for DeFi and blockchain in general.
Attract the best talent with the best reward.

We hope to turn blackhats into whitehats through alignments of
incentives with projects.

Who wants to become a Web3 Hacker?

Useful links to get you started

of

https://medium.com/immunefi/hacking-the-blockchain-an-ultimate-quide-4
f34b33c6e8b

https://solidity-by-example.org
https://qithub.com/ethereumbook/ethereumbook
https://qithub.com/OffcierCia/DeFi-Developer-Road-Map
https://www.damnvulnerabledefi.xyz
https://cmichel.io/how-to-become-a-smart-contract-auditor/
https://ethernaut.openzeppelin.com/
https://qithub.com/immunefi-team/community-challenges

https://medium.com/immunefi/hacking-the-blockchain-an-ultimate-guide-4f34b33c6e8b
https://medium.com/immunefi/hacking-the-blockchain-an-ultimate-guide-4f34b33c6e8b
https://solidity-by-example.org
https://github.com/ethereumbook/ethereumbook
https://github.com/OffcierCia/DeFi-Developer-Road-Map
https://www.damnvulnerabledefi.xyz
https://cmichel.io/how-to-become-a-smart-contract-auditor/
https://ethernaut.openzeppelin.com/
https://github.com/immunefi-team/community-challenges

