

The Endgame for the Ransomware in Critical Infrastructure!

Hank Chen, Mars Cheng

September 15, 2022

Hank Chen and Mars Cheng

Hank Chen

Mars Cheng

Threat Researcher, PSIRT and Threat Research at TXOne Networks

- Malware Analysis, Product Security and Vulnerability Research
- Teaching Assistant of Cryptography at Taiwan Tsing Hua University (NTHU) and CCoE
- Instructor of the Cyber Security training course for Taiwan Ministry of Defense
- Joined in many CTF competitions with 10sec and TSJ to focus on crypto, reverse, and pwn challenges
- Spoke at several cyber security conferences such as FIRST, BlackHat USA, HITCON, VXCON

Manager, PSIRT and Threat Research at TXOne Networks

- Executive Director, Association of Hackers in Taiwan (HIT)
- ICS/SCADA, IoT, Malware Analysis and Enterprise Security
- Spoke at Black Hat, RSA Conference, DEF CON, HITCON, FIRST, SecTor, HITB, SINCON,
 ICS Cyber Security Conference USA and Asia, CYBERSEC, InfoSec Taiwan and so on
- Instructor of HITCON Training 2022/2021/2020/2019,CCoE Taiwan, Ministry of Education, Ministry of National Defense, Ministry of Economic Affairs in Taiwan, and Listed companies
- General Coordinator of HITCON (Hacks In Taiwan Conference) PEACE 2022 and 2021

TXOne Networks Background

Founded in 2019, a company formed of a joint venture by Trend Micro and Moxa

Concentrated in OT/ICS all-terrain cybersecurity solutions by offering security inspection, endpoint protection, and network defense portfolios

Vertical leader in semiconductors, pharmaceuticals, and other critical infrastructures

Dedicated to OT/ICS threat research and cooperating with Trend Micro ZDI

Expand the perimeter by solution integration with security vendors and GSI

331 worldwide enterprises customers

Outline

- Threats in Review
- What are the Characteristics of Ransomware that Affects Critical Infrastructure?
- How can Critical Infrastructure Mitigate the Threat of Ransomware?
- Closing Remarks

2021 Attack Incidents in Critical Infrastructure Cyber Criminal Groups REvil REvil LockBit 2.0 US\$ 4.4 M Colonial Pipeline (US) Olympus EMEA 20+ Asia manufacturers **JBS** Acer US\$ 50 M UnkNown US\$ 11 M New Cooperative US\$ 5.9 M Volvo OmniTRAX (US) 70 gigabyte data stolen Health Service Executive (HSE) Ireland US\$ 20 M $\bullet \bullet \bullet$ $\bullet \bullet \bullet$ $\bullet \bullet \bullet$ 5 6 12 $\bullet \bullet \bullet$ $\bullet \bullet \bullet$ $\bullet \bullet \bullet$... 000 ... LockBit 2.0 Back to the Companhia Paranaense de Bangkok Air business and Asteeflash Group JVC Kenwood US\$ 7 M Energia (Copel) 1,000 using Cobalt US\$ 12 M 200GBs data stolen gigabytes data stolen Strike LockBit 2.0 Pursuing lateral Quanta Computer Kia US\$ 20 M ERG (Italian) HK Fimmick 1TB data stolen movement on US\$ 50 M VMware vCenter With Log4j **Exploit** LockBit 2.0 Brenntag (Germany) E.M.I.T. Aviation Consulting (Israeli) Oldsmar Water Treatment US\$ 4.4 M Plant Hacking Invenergy 4TB Data Stolen

The Key Observations from Attack Incidents in 2021

Most active criminal groups in 2021

• Conti, Maze, Lockbit, REvil and DarkSide

Targeting the Critical Infrastructure and leverage supply chain attack

- Colonial Pipeline attack in May by DarkSide
- Kaseya supply chain attack by REvil

Running the RaaS business model with the affiliate programs

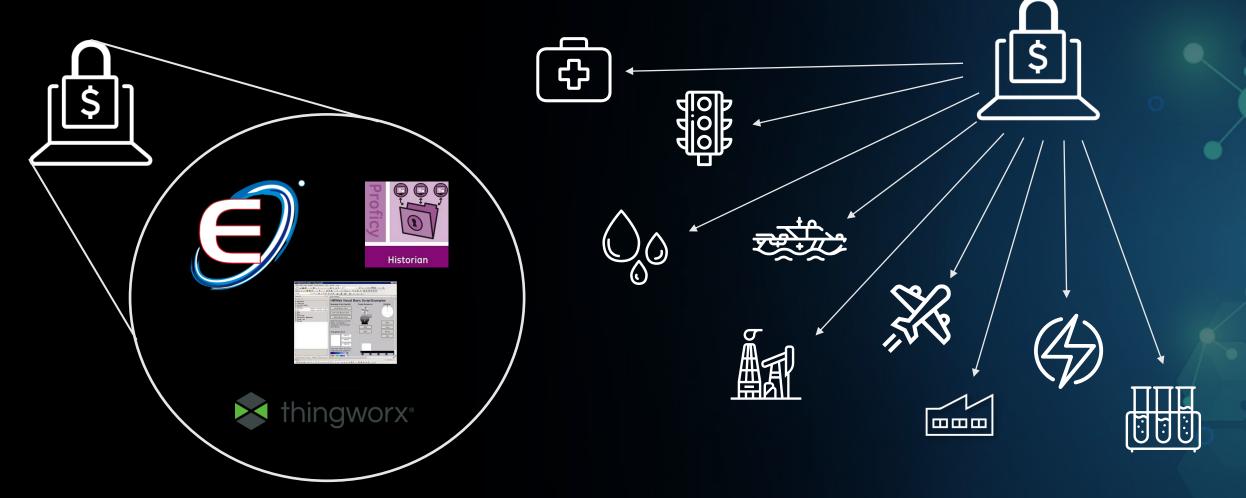
- Ransom demand less than 500k charge for 25%
- Ransom demand over 5M charge for 10%

Executive Order issued by U.S. President Joe Biden

- Improving the nation's cybersecurity
- Supply Chain and Software Bills of Materials (SBOMs)

Leverage zero-day vulnerabilities

- CVE-2021-30116, Kaseya VSA vulnerability
- CVE-2021-44228, Log4J vulnerability



Threat Overview Recent Attack Trends – Many Ransomware Family

Ransomware Family	2021 Q2	2021 Q3	2021 Q4	2022 Q1	From 2021 Q4 to 2022 Q1
WannaCry	62.38%	46.95%	46.73%	42.23%	\
Cryptor	4.06%	17.72%	15.91%	13.79%	>>
Locker	10.44%	10.92%	10.57%	13.43%	~
LockBit	2.10%	4.35%	5.32%	5.89%	~
Conti	3.49%	3.09%	3.98%	4.34%	~
Gandcrab	5.03%	5.21%	3.93%	4.19%	~
Locky	5.59%	3.28%	3.32%	3.69%	~
Cobra	2.61%	2.83%	2.73%	3.33%	~
Hive	0.59%	0.79%	1.82%	2.56%	~
MAZE	1.00%	1.27%	1.69%	2.07%	~

What Are Ransomware in Critical Infrastructure?

Targeted specific resources in critical infrastructure such as applications and certificates

The ransomware impacted the Critical Infrastructure before

The Ransomware Matrix

	WannaCry	Ryuk	Lockergoga	EKANS	RagnarLocker	ColdLock	Egregor	Conti v2
Language Check	No	No	No	No	Yes	No	Yes	No
Kill Process/Services	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
Persistence	Yes	Yes	No	No	No	No	No	
Privilege Escalation	Yes	Yes	No	No	Yes	No	No	No
Lateral Movement	Yes	No	No	No	No	No	No	No
Anti-Recovery	Yes	Yes	Yes	Yes	Yes	No		
Atomic-Check	Yes	Yes	Yes	Yes	Yes	Yes		
File Encryption	R-M-W	R-W-M	M-R-W	R-W-M	R-W-M	R-W-M	R-W-M	R-W-M
Partial Encryption	No	Yes	No	N/A	No	Yes		
Cipher Suite	AES-128-CBC RSA-2048	AES-256 RSA-2048	AES-128-CTR RSA-1024	AES-256-CTR RSA-2048	Salsa20 RSA-2048	AES-256-CBC RSA	ChaCha8 RSA-2048	ChaCha8 RSA-4096
Configuration File	Yes	No	No	Yes	Yes	No	Yes	No
Command-Line Arguments	Yes	No	Yes	No	Yes	No	Yes	Yes

Claim:

The matrix is only based on the samples we had analyzed. They might add more features in their variants.

File Encryption:

SF: SetFileInformationByHandle/NtSetInformationFile;

R: ReadFile; W: WriteFile; M: MoveFile; MP: MapViewOfFile, FF: FlushViewOfFile

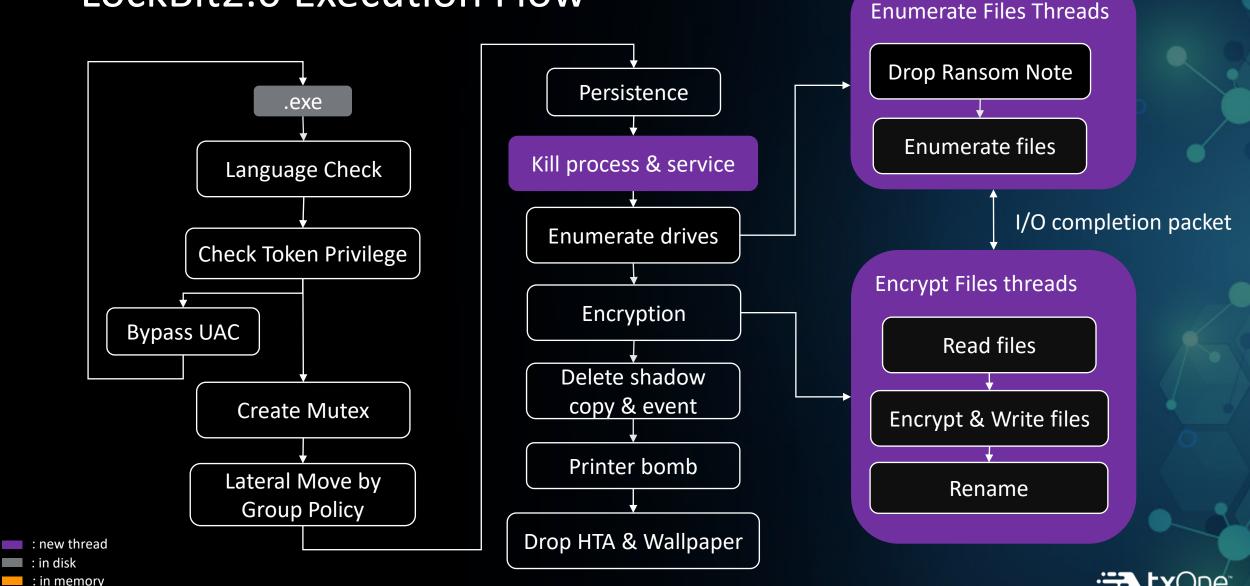
The Ransomware Matrix

	Bad Rabbit	Mount Locker	RansomExx	DoppelPaymer	Darkside	Babuk	REvil	LockBit 2.0
Language Check	No	No	No	No	Yes	No	Yes	Yes
Kill Process/Services	No	Yes	Yes	Yes	Yes	Yes	Yes	
Persistence	Yes	No	No	Yes	No	No	Yes	
Privilege Escalation	Yes	No	No	Yes	No	No	Yes	
Lateral Movement	Yes	Yes	No	No	No	No	No	
Anti-Recovery	No	No	Yes	Yes	Yes	Yes	Yes	
Atomic-Check	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
File Encryption	MP-FF	R-W-SF	R-W-M	R-W-M	M-R-W	M-R-W	R-W-M	R-W-SF
Partial Encryption	Yes	Yes	No	No	Yes	Yes	Yes	
Cipher Suite	AES-128-CBC RSA-2048	ChaCha20 RSA-2048	AES-256-ECB RSA-4096	AES-256-CBC RSA-2048	Salsa20 RSA-1024	HC256 Curve25519-ECDH	Salsa20 Curve25519-ECDH	AES-128-CBC Curve25519-ECDH
Configuration File	No	No	No	No	Yes	No	Yes	No
Command-Line Arguments	Yes	Yes	No	No	Yes	Yes	Yes	Yes

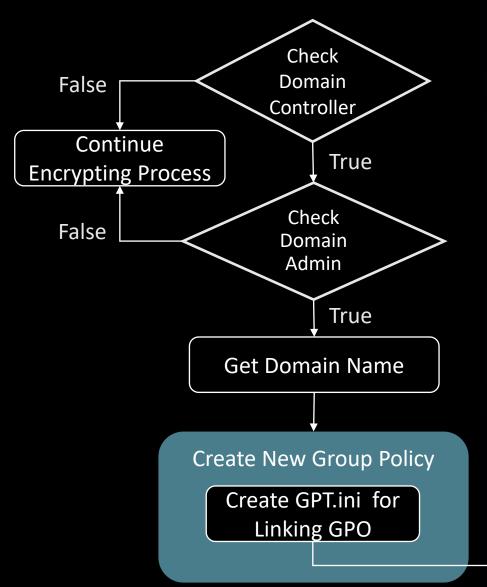
Claim:

The matrix is only based on the samples we had analyzed. They might add more features in their variants.

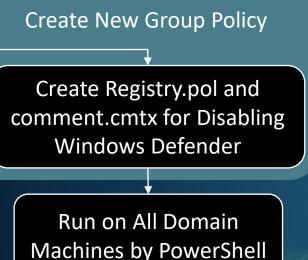
File Encryption:


SF: SetFileInformationByHandle/NtSetInformationFile;

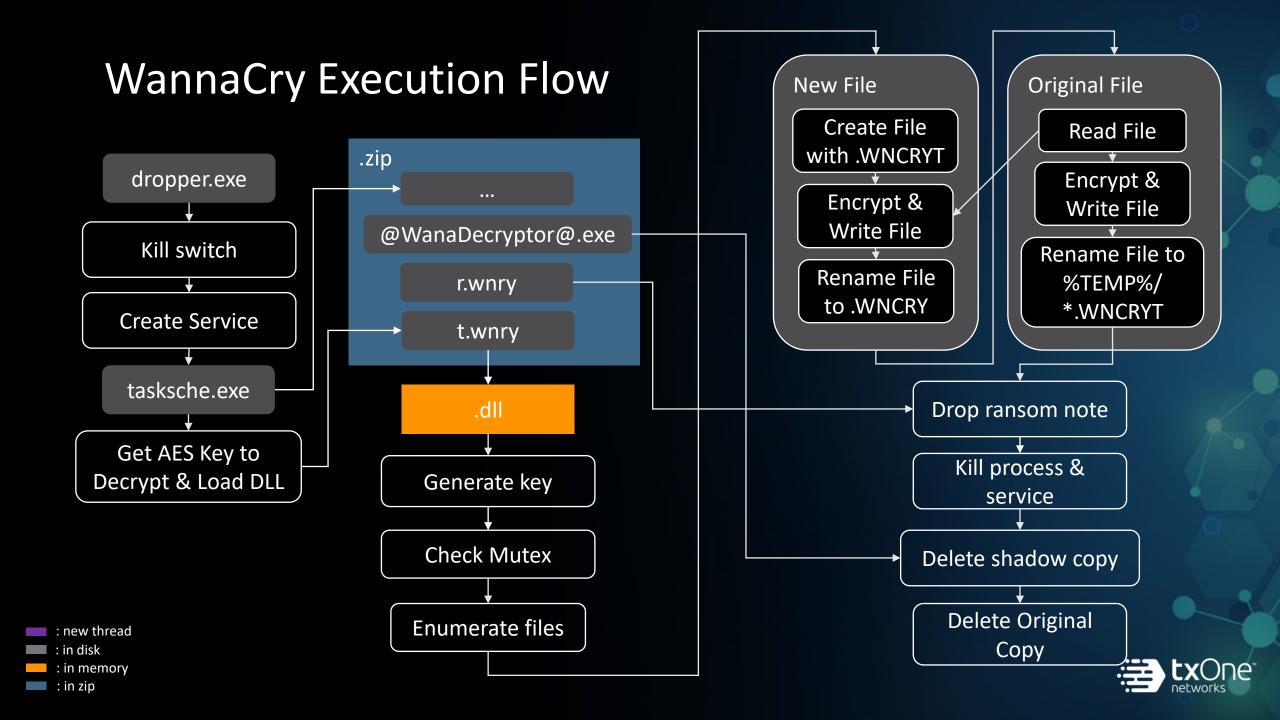
R: ReadFile; W: WriteFile; M: MoveFile; MP: MapViewOfFile, FF: FlushViewOfFile

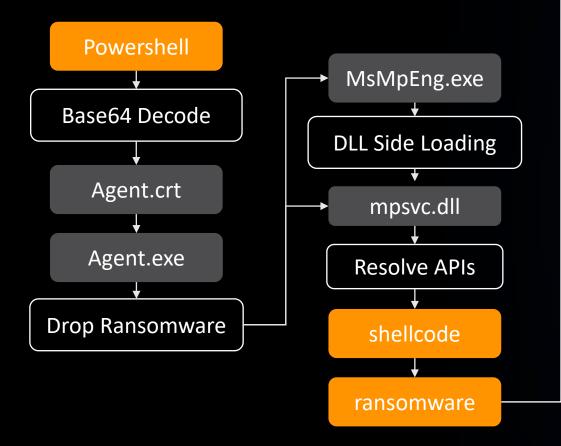


LockBit2.0 Execution Flow

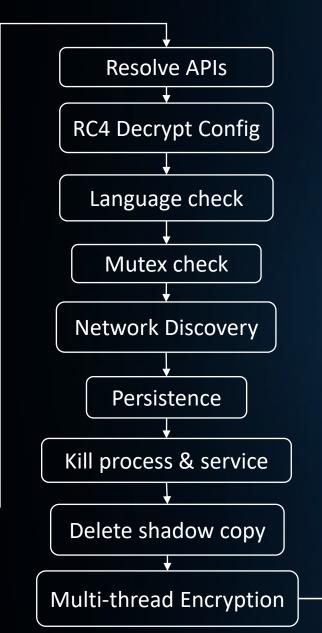

: in zip

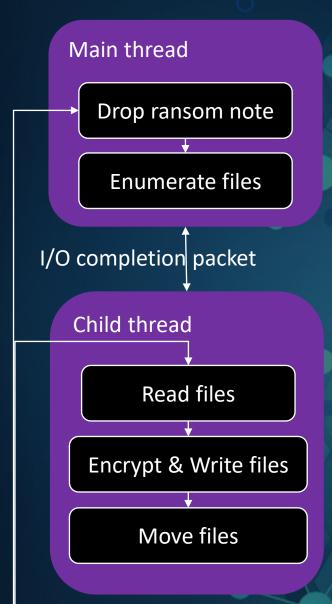
AD Group Policy Propagation Techniques in LockBit 2.0



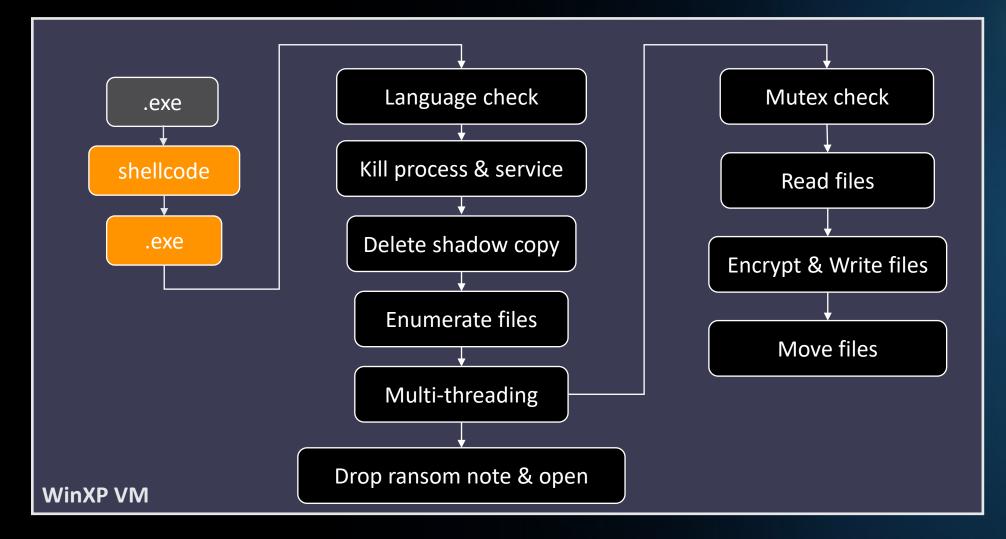


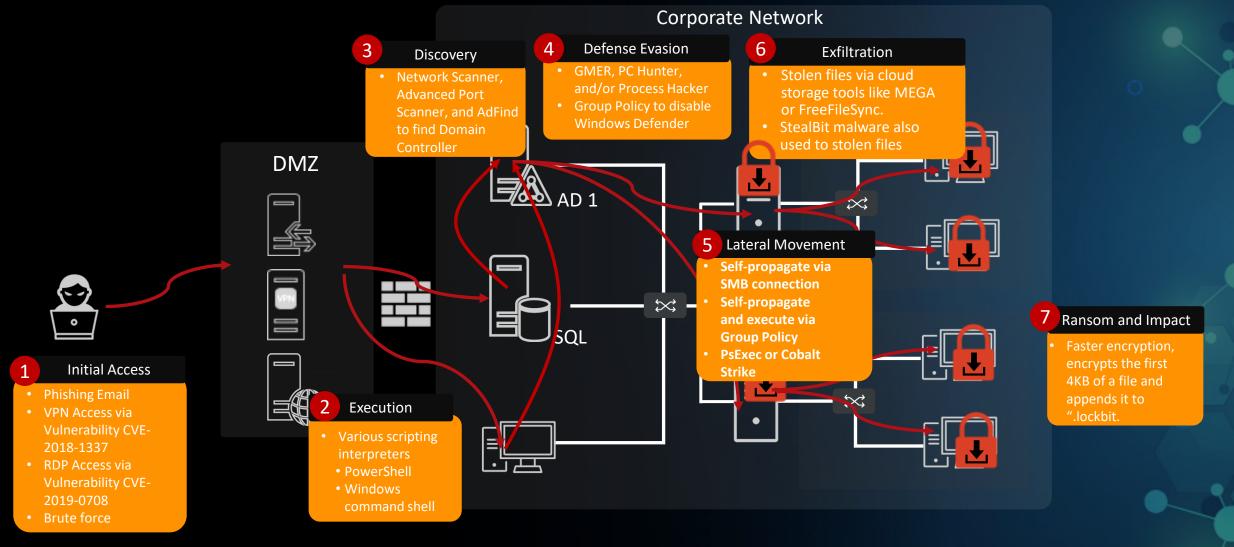
powershell.exe -Command "Get-ADComputer - filter * -Searchbase '%s' | foreach{ Invoke-GPUpdate -computer \$_.name -force - RandomDelayInMinutes 0}"




REvil Execution Flow

: new thread


: in disk : in memory : in zip


RagnarLocker Execution Flow

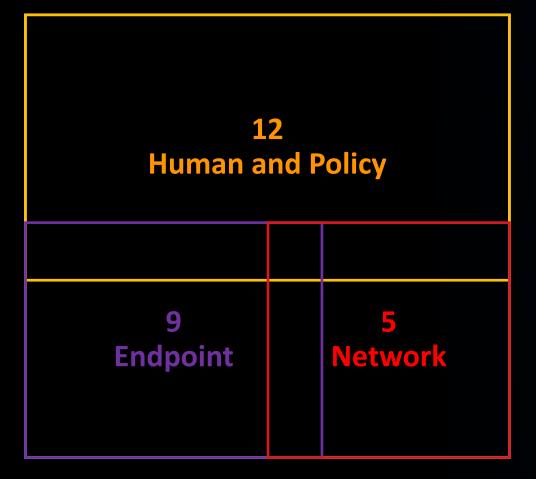
Common Attack Path of Ransomware in Critical Infrastructure

Common Characteristics of Ransomware in Critical Infrastructure

- 1. Atomic-Check (16)
- 2. Kill Process/Services (14)
- 3. Anti-Recovery (13)
- 4. Command-Line Arguments (11)

- 5. Partial Encryption (10)
- Privilege Escalation (7)
- Persistence (7)
- 8. Language Check (5)

Ransomware Techniques Based on MITRE ATT&CK for ICS


Initial Access	Execution	Persistence	Privilege Escalation	Evasion	Discovery	Lateral Movement	Collection	Command and Control	Inhibit Response Function	Impair Process Control	Impact
Drive-by Compromise	Change Operating Mode	Modify Program	Exploitation for Privilege Escalation	Change Operating Mode	Network Connection Enumeration	Default Credentials	Automated Collection	Commonly Used Port	Activate Firmware Update Mode	Brute Force I/O	Damage to Property
Exploit Public-Facing Application	Command-Line Interface	Module Firmware	Hooking	Exploitation for Evasion	Network Sniffing	Exploitation of Remote Services	Data from Information Repositories	Connection Proxy	Alarm Suppression	Modify Parameter	Denial of Control
Exploitation of Remote Services	Execution through API	Project File Infection		Indicator Removal on Host	Remote System Discovery	Lateral Tool Transfer	Detect Operating Mode	Standard Application Layer Protocol	Block Command Message	Module Firmware	Denial of View
External Remote Services	Graphical User Interface	System Firmware		Masquerading	Remote System Information Discovery	Program Download	I/O Image		Block Reporting Message	Spoof Reporting Message	Loss of Availability
Internet Accessible Device	Hooking	Valid Accounts		Rootkit	Wireless Sniffing	Remote Services	Man in the Middle		Block Serial COM	Unauthorized Command Message	Loss of Control
Remote Services	Modify Controller Tasking			Spoof Reporting Message		Valid Accounts	Monitor Process State		Data Destruction		Loss of Productivity and Revenue
Replication Through Removable Media	Native API						Point & Tag Identification		Denial of Service		Loss of Protection
Rogue Master	Scripting						Program Upload		Device Restart/Shutdown		Loss of Safety
Spearphishing Attachment	User Execution						Screen Capture		Manipulate I/O Image		Loss of View
Supply Chain Compromise							Wireless Sniffing		Modify Alarm Settings		Manipulation of Control
Transient Cyber Asset									Rootkit		Manipulation of View
Wireless Compromise									Service Stop		Theft of Operational Information
									System Firmware		

12 Tactics
78 Techniques

Application of Mitigations

24 mitigations

- Network Segmentation (Network)(4)
- Application Isolation and Sandboxing (Endpoint)(3)
- Network Intrusion Prevention (Network)(3)
- Exploit Protection (Network, Endpoint)(2)
- Restrict Web-Based Content (Endpoint)(2)
- Update Software(Endpoint, Human and Policy)(2)
- Disable or Remove Feature or Program (Endpoint)(2)
- Network Allowlists (Human and Policy)(2)
- Execution Prevention (Endpoint)(2)
- Code Signing (Endpoint)(2)
- Restrict File and Directory Permissions (Human and Policy)(2)
- Restrict Registry Permissions (Human and Policy)(2)
- Privileged Account Management (Human and Policy)
- Vulnerability Scanning(Network, Endpoint)
- Threat Intelligence Program
- Authorization Enforcement (Human and Policy)
- Human User Authentication (Human and Policy)
- Access Management (Human and Policy)
- Software Process and Device Authentication (Human and Policy)
- Password Policies (Human and Policy)
- Filter Network Traffic (Network)
- Antivirus/Antimalware (Endpoint)
- User Training (Human and Policy)
- User Account Management (Human and Policy)

Practical Ransomware Mitigation Strategies in Critical Infrastructure

The Difference between IT and OT

Туре	OT Environment	IT Environment
Virus Pattern Update	Hard	Usually up to date
The Variability of the Operating Environment	Low	High
The Burden of Ransomware Encryption on the System	High and may cause operation shutdown	Low to Middle

Malware Detection Methods

Туре	Scope
Signature-based	Byte sequence, List of DLL, Assembly Instruction
Behavior-based	API Calls, System calls, CFG, Instruction trace, n-gram, Sandbox
Heuristic-based	API Calls, System call, CFG, Instruction trace, List of DLL, Hybrid featues, n-gram
Cloud-based	Strings, System calls, Hybrid featues, n-gram
Learning-based	API Calls, System call, Hybrid featues

Limitations of Malware Detection

Туре	Limitations
Signature-based	Need huge database, Hard to defeat obfuscated samples, Vendor need to spend many people to update the signature
Behavior-based	Need to Run it, have the risk of attacking by 0-day exploits or vulnerabilities. Time-consuming and labor-intensive. Behavior policy can be bypassed
Heuristic-based	will include both of the above
Cloud-based	Immediacy of Internet connections. Adds additional delay to many tasks. Less effective at monitoring/detecting Heuristics
Learning-based	Learning dataset can't help to identify the variant

Limitations of Malware Detection

- Analysis is time-consuming and labor-intensive
- Vendor need to constantly update the latest malware signature
- Capabilities of identifying new variants is low
- Obfuscated samples are hard to defeat

Deep Dive into Our Symbolic Engine - TCSA

- TCSA (TXOne Code Semantics Analyzer)
 - Malware detection with instruction-level Semantic automata
 - Use Vivisect as the core decompiler engine
 - Support AMD, ARM, x86, MSP430, H8 and many other architectures
 - Support analysis of program files for Windows and Linux systems
 - Pure Python based Engine: Works on any platform able to run Python
 - In TCSA rule, developers can notate the data references between API calls
 - Symbolized return values of Win32 API, function, or unknown API
 - Usage of memory heap, stack, local variables, etc.
 - DefUse: tracing the source of data, memory values, argument values from
 - Support two additional feature extraction systems: YARA and Capa subsystems
 - Developers Orienting Malware Scanning Design
 - Developers can write their own Rules to be installed in the TCSA engine as callbacks
 - The TCSA engine will traverse and explore each function and the instructions in its Code Block
 - In the Callback, each instruction, memory, function name and parameter can be analyzed line by line

Practical Ransomware Mitigation Strategies in Critical Infrastructure

- IT Environment: TCSA + Other Mitigation Strategies
- OT Environment: Multilayer Mitigation Strategies



Related Work

- Three main papers which inspired our research
 - Christodorescu, Mihai, et al. "Semantics-aware malware detection." 2005 IEEE symposium on security and privacy (S&P'05). IEEE, 2005.
 - Kotov, Vadim, and Michael Wojnowicz. "Towards generic deobfuscation of windows API calls." arXiv preprint arXiv:1802.04466 (2018).
 - Ding, Steven HH, Benjamin CM Fung, and Philippe Charland. "Asm2vec: Boosting static representation robustness for binary clone search against code obfuscation and compiler optimization." 2019 IEEE Symposium on Security and Privacy (SP). IEEE, 2019.
- Thanks for their contributions

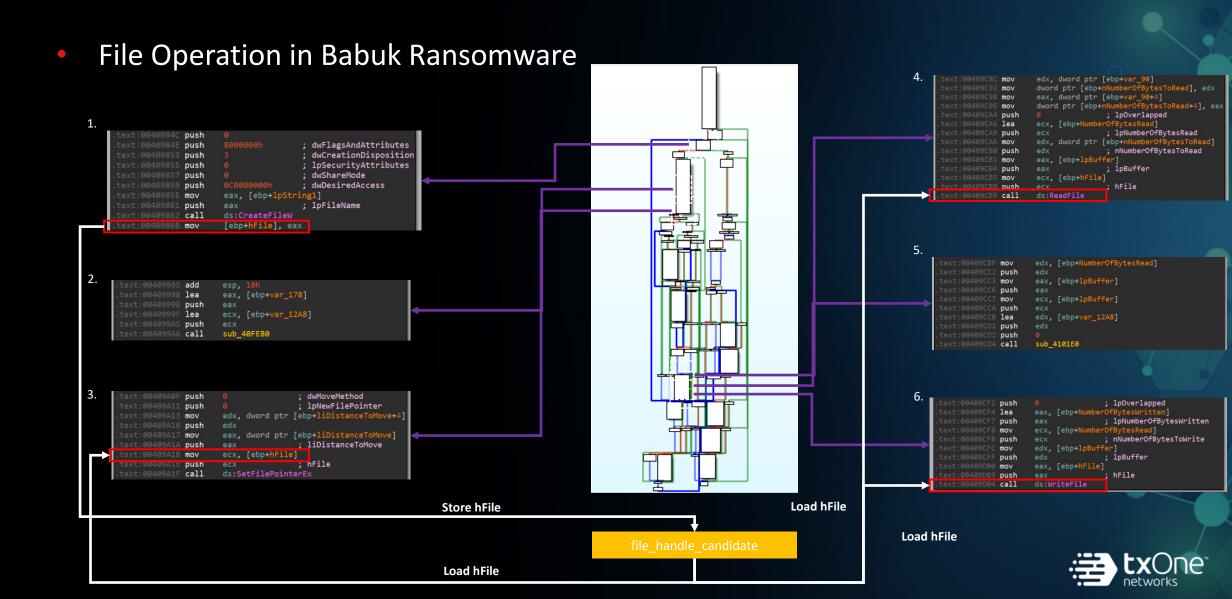
Deep Dive into Our Symbolic Engine - TCSA

- Basically, ransomware has the following capabilities
 - Find unfamiliar files (such as FindFirstFile)
 - Read/Write behavior in the same file (such as CreateFile -> ReadFile -> SetFilePointer -> WriteFile)
 - Identify common encrypt function or algorithm (WinCrypt*, AES, ChaCha, RC4...)
- What are our criteria of detection?
 - 3 features (file enumeration, file operations, encryption) detected or
 - One of the chain
 - File enumeration → Encryption
 - File enumeration & File operations → Encryption

File Enumeration

```
bool ransomMain(void)
{
    // [COLLAPSED LOCAL DECLARATIONS. PRESS KEYPAD CTRL-
    strcpy(aesKey, "3igcZhRdWq96m3GUmTAiv9");
    hFind = FindFirstFileA("*.*", &FindFileData);
    while ( 1 )
    {
       result = FindNextFileA(hFind, &FindFileData);
       if ( !result )
            break;
       if ( FindFileData.cFileName[0] != '.' )
       {
            strcat(pathToFile, FindFileData.cFileName);
            encryptFile(pathToFile, aesKey, 0x17u);
            printf("[v] encrypt file - %s\n", pathToFile);
       }
    }
    return result;
}
```

WannaCry Ransomware sample via IDA Pro


```
def callback(emu, starteip, op, iscall, callname, argv, argv snapshot, ret):
    if emu.funcva not in quessList findDataStruct:
        quessList findDataStruct[emu.funcva], quessList fileData cFileName[emu.funcva] = [], []
    if iscall:
        arg1, arg2, arg3 = argv[0], argv[1], argv[2]
        if "FindFirstFileA" == callname or "FindFirstFileW" == callname \
        or (len(argv) >= 2 and isPointer(emu, arg1) and (isPointer(emu, arg2) or arg2 == 0)):
            guessList_findDataStruct[emu.funcva].append( ret )
        if "FindNextFileA" == callname or "FindNextFileW" == callname \
        or (len(argv) >= 2 and arg1 in guessList_findDataStruct[emu.funcva]) and isPointer(emu, arg2):
            guessList_fileData_cFileName[emu.funcva].append(arg2 + 0x2C) # FindFileData.cFileName (+2Ch)
    if len(op.opers) > 1:
        if emu.getOperAddr(op, 1) in guessList_fileData_cFileName[emu.funcva] \
        or emu.getOperValue(op, 1) in guessList_fileData_cFileName[emu.funcva] :
            print(f'[+] fva: {hex(emu.funcva)}, Taint FileData.cFileName: {hex(starteip)}')
```


- File Operation
 - Taint file handle generated from CreateFile*
 - Monitor file I/O API usage

```
def callback(emu, starteip, op, iscall, callname, argv, argv snapshot, ret):
        if ("CreateFileA" in callname) or ("CreateFileW" in callname) or \
        ((len(argv) >= 7) and \
        not isPointer(emu, argv[1]) and (argv[1] & 0xFFFFFFFF & (GENERIC READ | GENERIC WRITE | GENERIC ALL)) and \
        not isPointer(emu, argv[2]) and (argv[2] == 0 or argv[2] & 0xFFFFFFFF & (FILE SHARE LOCK | FILE SHARE READ | FILE SHARE WRITE | FILE SHARE DELETE)) and \
        not isPointer(emu, argv[4]) and (argv[4] & 0xFFFFFFFF in (CREATE ALWAYS, OPEN EXISTING, CREATE NEW, OPEN ALWAYS)) and \
        not isPointer(emu, argv[5])):
            record handle(file handle list, emu.funcva, ret, starteip)
            record handle(file handle candidate, emu.funcva, ret, starteip)
        if ("SetFilePointer" in callname) or \
        ((len(argv) >= 4) and argv[3] == 0): # FILE BEGIN
            record handle(file handle candidate, emu.funcva, argv[0], starteip)
        if ("ReadFile" in callname) or ("WriteFile" in callname) or \
        ((len(argv) >= 5) and isPointer(emu, argv[1])):
            record handle(file handle candidate, emu.funcva, argv[0], starteip)
```


- File Encryption
 - Darkside
 - Customized Salsa20 matrix and encryption
 - 4 rounds of linear shifting
 - 7ev3n
 - R5A Encryption
 - •

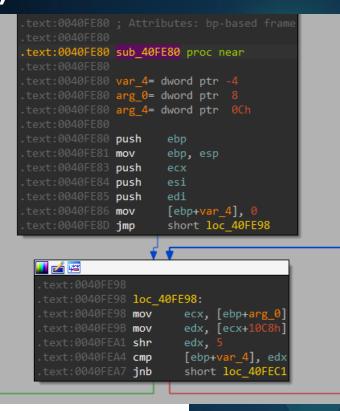
```
.text:00402187 mov
                    eax, [edi]
                    ebx, [edi+10h]
text:00402189 mov
.text:0040218C mov
                    ecx, [edi+20h]
                    edx, [edi+30h]
.text:0040218F mov
                    esi, eax
.text:00402192 mov
text:00402194 add
                    esi, edx
esi, 7
text:00402199 xor
                    ebx, esi
.text:0040219B mov
                    esi, ebx
.text:0040219D add
                    esi, eax
esi, 9
.text:004021A2 xor
                    ecx, esi
.text:004021A4 mov
                    esi, ecx
.text:004021A6 add
                    esi, ebx
esi, 0Dh
text:004021AB xor
                    edx, esi
text:004021AD mov
                    esi, edx
text:004021AF add
                    esi, ecx
esi, 12h
text:004021B4 xor
                    eax, esi
text:004021B6 mov
                     [edi], eax
text:004021B8 mov
                     [edi+10h], ebx
.text:004021BB mov
                     [edi+20h], ecx
.text:004021BE mov
                     [edi+30h], edx
```


Babuk Ransomware – File Enumeration

```
text:0040A41A lea
                                                                                                                              ecx, [ebp+FindFileData.cFileName]
                                                                                                        text:0040A420 push
                                                                                                                                              ; lpString1
                                                                                                        text:0040A421 call
                                                                                                                              ds:1strcmpW
                                                                                                        text:0040A427 test
                                                                                                        text:0040A429 jz
                                                                                                                              loc 40A511
                                                                                                       🗾 🚄 🖼
TXOne Code Semantics Analyzer (TCSA) v1.
                                                                                                         text:0040A42F lea
                                                                                                                               edx, [ebp+FindFileData.cFileNam
[<module 'Plugins' from '/home/hank/TCSA/Plugins/rule ransomware.py'>]
                                                                                                         text:0040A435 push
                                                                                                                               edx
                                                                                                                                                ; lpString
[OK] Rule Ransomware Attached.
                                                                                                         text:0040A436 call
                                                                                                                               ds:1strlenW
[+] fva: 0x40a5e0, Taint FileData.cFileName: 0x40a6ef
                                                                                                         text:0040A43C sub
[+] fva: 0x40a5e0, Taint FileData.cFileName: 0x40a6bb
                                                                                                         text:0040A43F mov
                                                                                                                               [ebp+var 8], eax
[+] fva: 0x40a2d0, Taint FileData.cFileName: 0x40a41a
                                                                                                         text:0040A442 jmp
                                                                                                                               short loc 40A44D
[+] fva: 0x40a2d0, Taint FileData.cFileName: 0x40a42f
[+] fva: 0x40a2d0, Taint FileData.cFileName: 0x40a3bb
[+] fva: 0x404a80, create new key via CryptAcquireContext
[+] fva: 0x409740, generate random numbers via WinAPI
[+] fva: 0x40fe80, encrypt data using HC-128 wrapper
[+] fva: 0x409740, CreateFile addr: ['0x409d63'], Taint Handle: ['0x409894', '0x409d67']
[+] fva: 0x409740, CreateFile addr: ['0x409c7a', '0x409c8c', '0x409caa', '0x409c63', '0x409b54', '0x409a49'], Taint Handle: ['0x409c67', '0x409b58', '0x409a4d']
[+] fva: 0x40a2d0, CreateFile addr: ['0x40a323', '0x40a349', '0x40a353'], Taint Handle: ['0x40a323', '0x40a34d', '0x40a357']
======= function topology =======
[file->encrypt] depth: 0, chain: ['0x409740']
[file->encrypt] depth: 1, chain: ['0x409740', '0x40fe80']
[file->encrypt] depth: 1, chain: ['0x40a2d0', '0x409740']
[file->encrypt] depth: 2, chain: ['0x40a2d0', '0x409740', '0x40fe80']
[enum->encrypt] depth: 1, chain: ['0x40a5e0', '0x409740']
[enum->encrypt] depth: 2, chain: ['0x40a5e0', '0x409740', '0x40fe80']
[enum->encrypt] depth: 1, chain: ['0x40a2d0', '0x409740']
[enum->encrypt] depth: 2, chain: ['0x40a2d0', '0x409740', '0x40fe80']
 --- total used 13.150455474853516 sec ---
```

text:0040A415 push

offset aHowToRestoreYo 0 ; "How To Restore Your Files.txt


Babuk Ransomware – File Operation

```
; lpString1
                                                                                                    text:0040A309 push
                                                                                                                               edx
                                                                                                    text:0040A30A call
                                                                                                                               ds:1strcatW
                                                                                                    text:0040A310 push
                                                                                                                                                   ; hTemplateFile
                                                                                                    text:0040A312 push
                                                                                                                                                     dwFlagsAndAttributes
                                                                                                    text:0040A314 push
                                                                                                                                                     dwCreationDisposition
                                                                                                    text:0040A316 push
                                                                                                                                                     lpSecurityAttributes
TXOne Code Semantics Analyzer (TCSA) v1.
[<module 'Plugins' from '/home/hank/TCSA/Plugins/rule ransomware.py'>]
                                                                                                    text:0040A318 push
                                                                                                                                                     dwShareMode
[OK] Rule Ransomware Attached.
                                                                                                    text:0040A31A push
                                                                                                                                                     dwDesiredAccess
[+] fva: 0x40a5e0, Taint FileData.cFileName: 0x40a6ef
                                                                                                    text:0040A31F mov
                                                                                                                               eax, [ebp+lpString1]
[+] fva: 0x40a5e0, Taint FileData.cFileName: 0x40a6bb
                                                                                                                                                   ; lpFileName
[+] fva: 0x40a2d0, Taint FileData.cFileName: 0x40a4la
                                                                                                   text:0040A323 call
                                                                                                                               ds:CreateFileW
[+] fva: 0x40a2d0, Taint FileData.cFileName: 0x40a42f
[+] fva: 0x40a2d0, Taint FileData.cFileName: 0x40a3bb
                                                                                                    text:0040A329 mov
                                                                                                                               [ebp+hFile], eax
   fva: 0x404a80, create new key via CryptAcquireContext
[+] fva: 0x409740, generate random numbers via WinAPI
[+] fva: 0x40fe80, encrypt data using HC-128 wrapper
[+] fva: 0x409740, CreateFile addr: ['0x409d63'], Taint Handle: ['0x409894', '0x409d67']
[+] fva: 0x409740, CreateFile addr: ['0x409c7a', '0x409c8c', '0x409caa', '0x409c63', '0x409b54', '0x409a49'], Taint Handle: ['0x409c67', '0x409b58', '0x409a4d']
[+] fva: 0x40a2d0, CreateFile addr: ['0x40a323', '0x40a349', '0x40a353'], Taint Handle: ['0x40a323',
====== function topology =======
[file->encrypt] depth: 0, chain: ['0x409740']
[file->encrypt] depth: 1, chain: ['0x409740', '0x40fe80']
[file->encrypt] depth: 1, chain: ['0x40a2d0', '0x409740']
[file->encrypt] depth: 2, chain: ['0x40a2d0', '0x409740',
[enum->encrypt] depth: 1, chain: ['0x40a5e0', '0x409740']
[enum->encrypt] depth: 2, chain: ['0x40a5e0', '0x409740', '0x40fe80']
[enum->encrypt] depth: 1, chain: ['0x40a2d0', '0x409740']
[enum->encrypt] depth: 2, chain: ['0x40a2d0', '0x409740', '0x40fe80']
  --- total used 13.150455474853516 sec ---
```


Babuk Ransomware – File Encryption

```
text:0040FE83 push
                                                                                                                                         text:0040FE84 push
                                                                                                                                         text:0040FE85 push
                                                                                                                                         text:0040FE86 mov
                                                                                                                                         text:0040FE8D jmp
TXOne Code Semantics Analyzer (TCSA) v1.
                                                                                                                                          3
[<module 'Plugins' from '/home/hank/TCSA/Plugins/rule ransomware.py'>]
[OK] Rule Ransomware Attached.
[+] fva: 0x40a5e0, Taint FileData.cFileName: 0x40a6ef
[+] fva: 0x40a5e0, Taint FileData.cFileName: 0x40a6bb
[+] fva: 0x40a2d0, Taint FileData.cFileName: 0x40a4la
[+] fva: 0x40a2d0, Taint FileData.cFileName: 0x40a42f
                                                                                                                                           text:0040FEA4 cmp
[+] fva: 0x40a2d0, Taint FileData.cFileName: 0x40a3bb
                                                                                                                                           text:0040FEA7 jnb
[+] fva: 0x404a80, create new key via CryptAcquireContext
[+] fva: 0x409740, generate random numbers via WinAPI
[+] fva: 0x40fe80, encrypt data using HC-128 wrapper
[+] fva: 0x409740, CreateFile addr: ['0x409d63'], Taint Handle: ['0x409894', '0x409d67']
[+] fva: 0x409740, CreateFile addr: ['0x409c7a', '0x409c8c', '0x409caa', '0x409c63', '0x409b54', '0x409a49'], Taint Handle: ['0x409c67', '0x409b58', '0x409a4d']
[+] fva: 0x40a2d0, CreateFile addr: ['0x40a323', '0x40a349', '0x40a353'], Taint Handle: ['0x40a323', '0x40a34d', '0x40a357']
====== function topology =======
[file->encrypt] depth: 0, chain: ['0x409740']
[file->encrypt] depth: 1, chain: ['0x409740', '0x40fe80']
[file->encrypt] depth: 1, chain: ['0x40a2d0', '0x409740']
[file->encrypt] depth: 2, chain: ['0x40a2d0', '0x409740', '0x40fe80']
[enum->encrypt] depth: 1, chain: ['0x40a5e0', '0x409740']
[enum->encrypt] depth: 2, chain: ['0x40a5e0', '0x409740', '0x40fe80']
[enum->encrypt] depth: 1, chain: ['0x40a2d0', '0x409740']
[enum->encrypt] depth: 2, chain: ['0x40a2d0', '0x409740', '0x40fe80']
 --- total used 13.150455474853516 sec ---
```

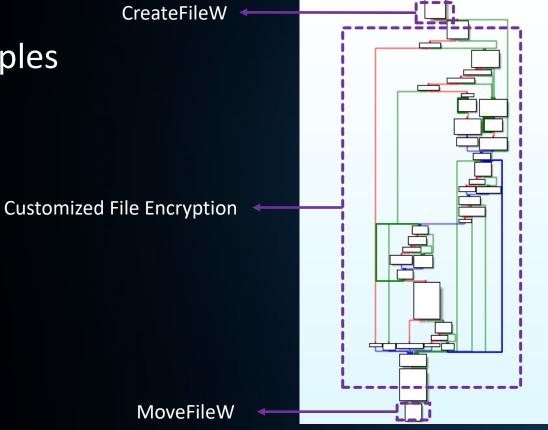

- Experiment
- How we collect Ransomware samples?
 - Time interval: 2021.06-2022.06
 - Filter process
 - Found in VirusTotal, more than 3 antivirus vendors identify ransomware, and it is Windows executable
 - Automated dynamic analysis (commercial sandbox)
 - Final check samples
 - Get ransomware sample dataset
 - Results
 - 1153 / 1206 (95.60%) !!!

Purge	Seven	Phobos	Lockbit	Agent	Explus	Taleb	Hive
Rents	Medusalocker	Cryptolocker	Makop	Redeemer	Sodinokibi	Garrantycrypt	Tovicrypt
Conti	Crysis	Filecoder	Crypren	Hydracrypt	Avoslocker	Sevencrypt	Crypmod
Sorikrypt	Higuniel	Paradise	Cryptor	Wixawm	Zcrypt	Sodinokib	Xorist
Nemty	Fakeglobe	Emper	Quantumlocker	Blackmatter	Revil	Bastacrypt	Ranzylocker
Avaddon	Netfilm	Wana	Garrantdecrypt	Smar	Akolocker	Cryptlock	Wadhrama
Phoenix	Spora	Babuklocker	Lockergoga	Buhtrap	Ryuk	Nemisis	Netwalker
Deltalocker	Karmalocker	Genasom	Thundercrypt	Wcry	Hkitty	Swrort	Babuk

Conti variants

Ransom.Win32.CONTI.SM.hp Ransom.Win32.CONTI.SMTH.hp Ransom.Win32.CONTI.SMYXBBU Ransom.Win32.CONTI.SMYXBFD.hp Ransom.Win32.CONTI.YACCA Ransom.Win32.CONTI.YXCAAZ Ransom.Win32.CONTI.YXCBSZ

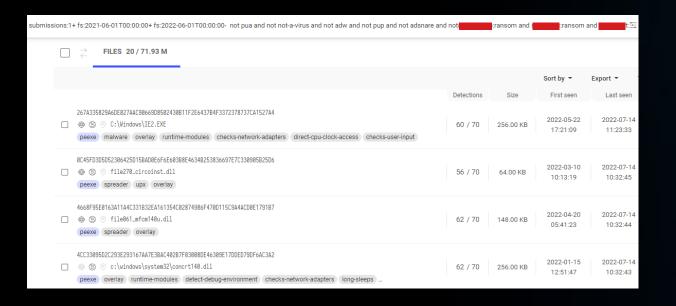
LockBit variants

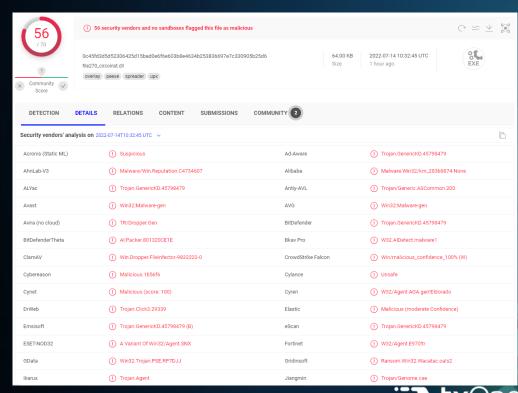

Ransom.Win32.LOCKBIT.SMCET Ransom.Win32.LOCKBIT.SMDS Ransom.Win32.LOCKBIT.SMYEBGW Ransom.Win32.LOCKBIT.YXBHC-TH Ransom_LockBit.R002C0CGI21 Ransom_Lockbit.R002C0DC022 Ransom_Lockbit.R002C0DHB21 Ransom_Lockbit.R002C0DHD21

7ev3n variants

Ransom Seven.R002C0DA422 Ransom Seven.R002C0DA522 Ransom Seven.R002C0DA922 Ransom Seven.R002C0DAA22 Ransom Seven.R002C0DAF22 Ransom Seven.R002C0DAP22 Ransom Seven.R002C0DAR22 Ransom Seven.R002C0DAS22 Ransom Seven.R002C0DAT22 Ransom Seven.R002C0DAV22 Ransom Seven.R002C0DB122 Ransom Seven.R002C0DB222 Ransom Seven.R002C0DB322 Ransom Seven.R002C0DB822 Ransom Seven.R002C0DB922 Ransom Seven.R002C0DBA22 Ransom Seven.R002C0DBM22 Ransom Seven.R002C0DC222 Ransom Seven.R002C0DC922 Ransom Seven.R002C0DCB22 Ransom Seven.R002C0DCC22 Ransom Seven.R002C0DCE22 Ransom Sodin.R002C0PGM21 Ransom EMPER.SM

- For some of undetected samples
 - Prolock / PwndLocker
 - Unknown Encryption Algorithm




Experiment

By randomly finding 200 non-ransom samples from VirusTotal (2021/06/01

- 2022/06/01)

False Positive: 0%

Practical Ransomware Mitigation Strategies in Critical Infrastructure

- IT Environment: TCSA + Other Mitigation Strategies
- OT Environment: Multilayer Mitigation Strategies

Practical Ransomware Mitigation Strategy for OT environment

Known Ransonware Scanning

Ransomware Pre-detection Mechanism

Ransomware Encrypted Sequence Detection

Hardly cause any burden on the ICS system

Detect ransomware family common features and block before encryption

Detect ransomware encrypted sequences can prevent excessive burden on the ICS machine and block encryption process

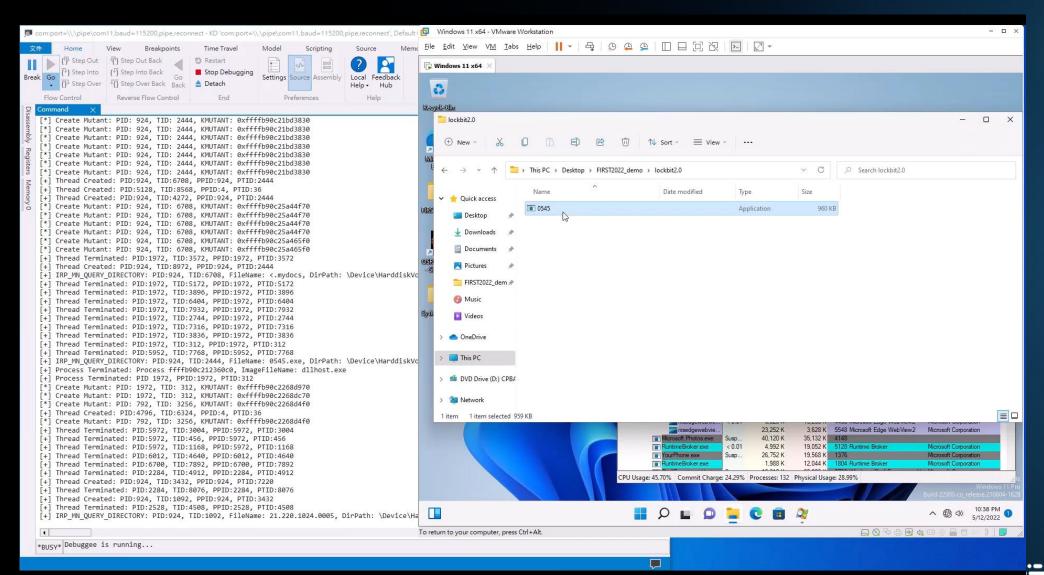
Unable to detect and block new/variant ransomware attacks

False-Positive

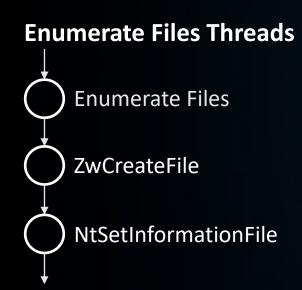
Nothing found so far

ICS-Related Ransomware Pre-detection Mechanism

If prevent process be terminated


If atomic check failed

If enumerate files failed


If prevent shadow copy be deleted

ICS-Related Ransomware Pre-detection Mechanism

Main Thread ZwCreateloCompletion NtSetIoCompletion

Main Thread

ZwCreateloCompletion

NtSetIoCompletion

Enumerate Files Threads

Enumerate Files

ZwCreateFile

NtSetInformationFile


```
wCreateIoCompletion = (int (__stdcall *)(int *, int, _DWORD, int))get ZwCreateIoCompletion addr();
if ( ZwCreateIoCompletion(&IoCompletionHandle 0, 0x1F0003, 0, v43) >= 0 )
 encrypt file thread pool = alloc mem((void *)(4 * thread num max));
 if ( encrypt file thread pool )
    v38 = 0;
    if (!thread num max)
     return 1;
    while (1)
      *( DWORD *) (encrypt file thread pool + 4 * v38) = create thread wrapper((int) file encryption 49E730, 0);
      v39 = *( DWORD *) (encrypt file thread pool + 4 * v38);
     if ( v39 == -1 )
       break;
     v46 = 1 << v38;
     NtSetInformationThread = (void ( stdcall *)(int, int, int *, int))get NtSetInformationThread addr();
     NtSetInformationThread(v42, 4, &v46, 4);
     if ( ++v38 >= (unsigned int)thread num max )
        return 1;
  NtSetIoCompletion 4A2B80();
```


Main Thread

ZwCreateloCompletion

NtSetloCompletion

Enumeration Files Threads

Enumerate Files

ZwCreateFile

NtSetInformationFile |

Encryption Files Threads

NtRemoveloCompletion

AES Encrypt File Content

→ Append Key Blob

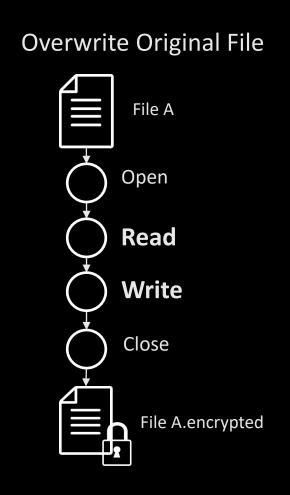
→ Rename

t ZwCreateFile addr();


```
v16 = completion key;
LODWORD(v73) = completion key 1->hFile;
v68 = (void *) (LOWORD (completion key 1->field 34) + 0x10);
v40 = alloc mem(v68);
v41 = (DWORD *) v40;
if ( v40 )
  sub 40D7A0(v40 + 12, completion key 1->field 38, LOWORD(completion key 1->field 34));
  v41[2] = LOWORD (completion key 1->field 34);
  * ( BYTE *) v41 = 0;
  v41[1] = 0;
  \nabla 76 = 0i64;
  v54 = v73;
 NtSetInformationFile 1 = (void ( stdcall *)(int, int64 *, DWORD *, void *, int))get NtSetInformationFile addr();
 NtSetInformationFile 1(v54, &v76, v41, v68, 10);// FileRenameInformation
  ZwFreeVirtualMemory wrapper(v41);
v39 = completion key 1 + 1;
11 | ZWWriteFile(hFile 2, U, U, IoStatus, Buffer, Len, V5/, V59, U) < U
```

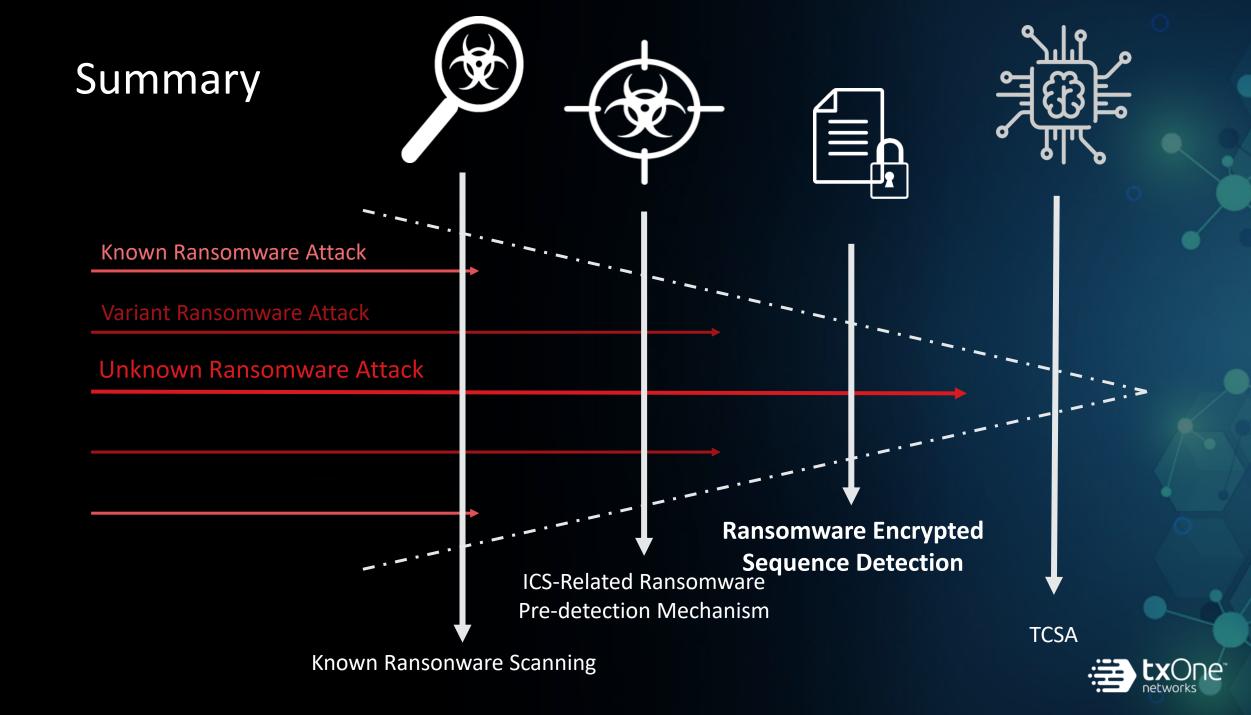
Ransomware Encryption Sequence Detection

Sequence	Ransomware		
R-M-W	WannaCry		
R-W-M	Ryuk, RagnarLocker, ColdLock, Egregor, Conti v2, RansomExx, DoppelPaymer, Revil, EKANS		
R-W-SF	Mount Locker, LockBit 2.0		
M-R-W	Darkside, Babuk Locker, Lockergoga		
MP-FF	Bad Rabbit		


File Encryption Flags:

SF: SetFileInformationByHandle/NtSetInformationFile

R: ReadFile; W: WriteFile; M: MoveFile MP: MapViewOfFile, FF: FlushViewOfFile



Ransomware Encrypted Sequence Detection

Opensource to Infosec Community

TCSA v1

TXOne Code Semantics Analyzer by TXOne Networks, inc.

Hightlight Features

- 1. Malware Detection, e.g. Process Hollowing & Ransomware
- 2. Vulnerability Scanning e.g. Firmware Command Injection
- 3. (unpractical) ML for Clustering Malware e.g. Neural Networks

Installation

- 1. Script Usage: \$pip install vivisect then \$python3 Akali/akali.py samples/hello_recur.exe
- 2. Standalone Build: \$pyinstaller .github\pyinstaller\akali.spec then \$dist\akali.exe samples\hello_recur.exe

https://github.com/TXOne-Networks/TCSA

